Apparently, TPP can efficiently be accommodated by isomers
1 and 2 in their hydrophobic micro-environments, which
directly place donor and acceptor in close proximity.
The authors thank Aurelie Brizard and Wesley Browne for
helpful discussions.
It was found that when 1 or 2 were combined with the
hydrophobic chromophores as acceptors an ET-system in
water could be formed, based solely on self-assembly of
donors and acceptor due to hydrophobic interactions. To
1.0 mM solutions of amphiphilic thiophenes 1 or 2, different
quantities of TPP or Nile Red were added to give acceptor
concentrations of 0 to 250 mM. It was observed that the
emissions of 1 and 2 are increasingly quenched by the addition
of increasing amounts of TPP as indicated by w (see Table 1),
until a plateau is reached at a molar ratio of 1 or 2 to TPP of
about 20 : 1 (ESI, SI6, SI10z). The quantum efficiencies are
66% and 92% for combinations 1/TTP and 2/TPP, respec-
tively. Simultaneously an increase in the emission intensity of
TPP is observed. These results indicate that there is efficient
ET from the thiophenes to the porphyrin. The large overlap of
the excitation spectrum with the absorption spectra of the
thiophenes, and the similarity of the TPP emission maxima by
direct excitation of TPP or via the thiophenes, confirm this
conclusion and exclude the formation of excimers and ground
state interaction of 1 or 2 with TPP.
Notes and references
1 (a) C. J. Law, A. W. Roszak, J. Southall, A. T. Gardiner,
N. W. Isaacs and R. J. Cogdell, Mol. Membr. Biol., 2004, 21,
183; (b) N. Armaroli and V. Balzani, Angew. Chem., Int. Ed., 2007,
46, 52–66.
2 (a) M. Ghirotti, C. Chiorboli, C.-C. You, F. Wurthner and
F. Scandola, J. Phys. Chem. A, 2008, 112, 3376–3385;
(b) C. Devadoss, P. Bharathi and J. S. Moore, J. Am. Chem.
Soc., 1996, 118, 9635–9644; (c) J.-S. Hsiao, B. P. Krueger,
R. W. Wagner, T. E. Johnson, J. K. Delaney, D. C. Mauzerall,
G. R. Fleming, J. S. Lindsey, D. F. Bocian and R. J. Donohoe,
J. Am. Chem. Soc., 1996, 118, 11181–11193; (d) J. Hofkens,
M. Maus, T. Gensch, T. Vosch, M. Corlet, F. Kohn,
A. Herrmann, K. Mullen and F. De Schryver, J. Am. Chem.
Soc., 2000, 122, 9278–9288.
3 (a) S. L. Gilat, A. Adronov and J. M. J. Frechet, J. Org. Chem.,
1999, 64, 7474; (b) A. Adronov, S. L. Gilat, J. M. J. Frechet,
K. Ohta, F. V. R. Neuwahl and G. R. Fleming, J. Am. Chem. Soc.,
2000, 122, 1175–1185; (c) U. Hahn, M. Gorka, F. Vogtle,
V. Vicinelli, P. Ceroni, M. Maestri and V. Balzani, Angew. Chem.,
Int. Ed., 2002, 41, 3595–3598; (d) C. Giansante, P. Veroni,
V. Balzani and F. Vogtle, Angew. Chem., Int. Ed., 2008, 47,
5422–5425.
4 J. H. Hurenkamp, W. R. Browne, R. Augulis, A. Pugzlys,
P. H. M. van Loosdrecht, J. H. van Esch and B. L. Feringa,
Org. Biomol. Chem., 2007, 5, 3354–3362.
5 L. Jullien, J. Canceill, B. Valeur, E. Bardez, J.-P. Lefevre,
J.-M. Lehn, V. Marchi-Artzner and R. Pansu, J. Am. Chem.
Soc., 1996, 118, 5432–5442.
Similar observations were made upon the incorporation of
Nile Red in micelles of 1 or 2, concluding that also the Nile
Red/thiophene combinations display efficient ET. Also, the
emission intensity of Nile Red by ET is 20 and 12 times higher
by excitation of 1 and 2, respectively, than when Nile Red is
directly excited at 550 nm under the same conditions (ESI
SI6/10z). Apparently, the micellar assembly acts as a light
absorbing antenna in which the presence of multiple thiophene
donors increases the absorption cross section and therefore
this increase is seen.
6 (a) A. Ajayaghosh, V. K. Praveen and C. Vijayakumar, Chem. Soc.
Rev., 2008, 37, 109–122; (b) C. Roger, Y. Miloslavina, D. Brunner,
A. R. Holzwarth and F. Wurthner, J. Am. Chem. Soc., 2008, 130,
5929–5939; (c) T. Shu, J. Wu, L. Chen, T. Yi, F. Li and C. Huang,
J. Mater. Chem., 2008, 18, 886–893; (d) J. Larsen, F. Puntoriero,
T. Pascher, N. McClenaghan, S. Campagna, E. Akesson and
V. Sundstrom, ChemPhysChem, 2007, 8, 2643–2651; (e) F. J.
M. Hoeben, L. M. Herz, C. Daniel, P. Jonkheijm, A. P. H.
J. Schenning, C. Silva, S. C. J. Meskers, D. Beljonne,
R. T. Phillips, R. H. Friend and E. W. Meijer, Angew. Chem.,
Int. Ed., 2004, 43, 1976–1979; (f) M. J. Ahrens, L. E. Sinks,
B. Rybtchinski, W. H. Liu, B. A. Jones, J. M. Giaimo,
A. V. Gusev, A. J. Goshe, D. M. Tiede and M. R. Wasielewski,
J. Am. Chem. Soc., 2004, 126, 8284–8294; (g) R. F. Kelly,
R. H. Goldsmith and M. R. Wasielewski, J. Am. Chem. Soc.,
2007, 129, 6384–6385.
When considering the absorption of TPP in the micelles,
a 7 nm red shift is observed for the absorption while for TTP
normally a blue shift is observed with decreasing polarity,
which indicates that there is a small coupling between donor
and acceptor. A similar interaction is seen in the combination
with Nile Red, the emission maximum shifts to the red
(B20 nm) and that of the thiophene shifts to the blue
(B5 nm). This may be due to a groundstate coupling between
donor and acceptor. We suppose that the ET goes via the
7 S. Bhosale, A. L. Sisson, N. Sakai and S. Matile, Org. Biomol.
Chem., 2006, 4, 3031–3039.
8 A. Ajayaghosh, V. K. Praveen, C. Vijayakumar and S. J. George,
Angew. Chem., Int. Ed., 2007, 46, 6260–6265.
Forster mechanism considering that kET 4 kNR
.
9 T. Bjørnholm, D. R. Greve, N. Reitzel, T. Hassenkam, K. Kjaer,
P. B. Howes, N. B. Larsen, J. Bøgelund, M. Jayaraman,
P. C. Ewbank and R. D. McCullough, J. Am. Chem. Soc., 1998,
120, 7643–7644.
10 L. Qiao and A. J. Easteal, Colloid Polym. Sci., 1998, 276, 313–320.
11 A. Facchetti, M.-H. Yoon, C. L. Stern, G. R. Hutchison,
M. A. Ratner and T. J. Marks, J. Am. Chem. Soc., 2004, 126,
13480–13501.
In conclusion, we successfully developed conjugated terthio-
phene surfactants that aggregate into micellar type assemblies
at low concentrations. These micelles can act as a host for
hydrophobic chromophores, in which efficient ET can take
place between the donor aggregate and the acceptor. This
approach gives access to new antenna systems which are
completely formed by self-assembly of small molecular
components and can easily be modified by varying the hydro-
phobic acceptor.
12 M. Kasha, Radiat. Res., 1963, 20, 55–70.
13 (a) D. Grebner, M. Helbig and S. Rentsch, J. Phys. Chem., 1995,
99, 16991–16998; (b) R. S. Becker, J. Seixas de Melo,
A. L. Maanita and F. Elisei, J. Phys. Chem., 1996, 100,
18683–18695.
14 M. C. A. Stuart, J. C. van de Pas and J. B. F. N. Engberts, J. Phys.
Org. Chem., 2005, 18, 929–934.
This work was supported by Nanoned/STW and the
Netherlands Organization for Scientific Research (NWO).
ꢁc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 2163–2165 | 2165