Published on Web 06/11/2003
Phase-Selective Solubility of Poly(N-alkylacrylamide)s
David E. Bergbreiter,* Reagan Hughes, Jacqueline Besinaiz, Chunmei Li, and
Philip L. Osburn
Contribution from the Department of Chemistry, Texas A&M UniVersity, P.O. Box 30012,
College Station, Texas 77842-3012
Received March 2, 2003; E-mail: bergbreiter@tamu.edu
Abstract: The extent of the phase-selective solubility of poly(N-alkylacrylamide)s was studied by UV-vis
and fluorescence spectroscopy using poly(N-isopropylacrylamide) and poly(N-octadecylacrylamide) as
representative polar and nonpolar poly(N-alkylacrylamide)s in a mixture of polar and nonpolar thermomorphic
solvents. Phase-selective solubilities of greater than 10000:1 were seen with each labeled polymer in polar
and nonpolar solvents such as heptane and DMF or heptane and 90% EtOH-H2O. Using a poly(N-
acryloxysuccinimide) as a common precursor, a pool-split synthesis was devised to prepare a library of
poly(N-alkylacrylamide)s whose members varied only in the size of their N-alkyl substituent. The solubilities
of these library members were measured in both the polar and nonpolar phases of a thermomorphic heptane/
90% EtOH-H2O mixture at 25 °C. Such solvent mixtures are miscible hot (70 °C) and biphasic cold (25
°C). The results show that poly(N-pentylacrylamide) is selectively soluble (>99.5%) in the polar EtOH-rich
phase at rest. Poly(N-alkylacrylamide)s with larger N-alkyl groups are predominantly (C6, 85%; C7, 95%)
or exclusively (>C8, >99.5%) in the heptane-rich phase at rest.
Polymer solubility is important in many applications of
macromolecular materials. Polymer solubility is particularly
important in work where soluble polymers serve as supports
for catalysts, reagents, sequestrants, or substrates.1 The most
common problem in designing a suitable soluble polymer
support is the need to achieve a high enough solubility so that
useful concentrations of catalysts, substrates, or reagents are
present. However, it is equally important to ensure that the
polymers used as supports have selective solubility because a
soluble polymer support is only useful if it is completely
separable from the solution under some other condition. It is
most common to achieve this result by a change of solvents or
conditions so that a soluble polymer support becomes completely
insoluble. Such a solubility change can be achieved by solvent
precipitation,2 pH change,3 cooling,1b,4 or heating.5 Alternatives
to separations that do not involve precipitation and filtration
are of interest too. For example, membrane filtration can separate
a solution of a large polymeric species and a smaller lower
molecular weight product.6 Membrane filtration is especially
useful with dendridic polymers whose shape facilitates this sort
of separation.7 More recently, work from our group and others
has shown that a polymer’s selective solubility in one phase of
a biphasic mixture can be as useful as either precipitation or
membrane filtration.8,9 Here we describe our studies of the
effects of polymer structure on the phase-selective solubility
of polymers in thermomorphic liquid/liquid biphasic mixturess
studies that show minor changes in polymer structure have a
profound effect on phase-selective solubility.
The work described here focuses on poly(N-alkylacrylamide)s
using a variety of solvent mixtures. These polymers were chosen
for study because we have already used these supports in
biphasic liquid/liquid separations. These polymers are accessible
by a synthetic route that we developed for the synthesis of a
(6) Vankelecom, I. F. J. Chem. ReV. 2002, 102, 3779-3810. Sirkar, K. K.;
Shanbhag, P. V.; Kowali, A. S. Ind. Eng. Chem. Res. 1999, 38, 3715-
3737. Dijkstra, H. P.; van Klink, G. P. M.; van Koten, G. Acc. Chem. Res.
2002, 35, 798-810.
(7) van Heerbeek, R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N.
H. Chem. ReV. 2002, 102, 3717-3756.
(8) (a) Bergbreiter, D. E.; Liu, Y.-S.; Osburn, P. L. J. Am. Chem. Soc. 1998,
120, 4251-4252. (b) Bergbreiter, D. E.; Osburn, P. L.; Wilson, A.; Sink,
E. M. J. Am. Chem. Soc. 2000, 122, 9058-9064. (c) Bergbreiter, D. E.;
Osburn, P. L.; Frels, J. D. J. Am. Chem. Soc. 2001, 123, 11105-11106.
(d) Mizugaki, T.; Murata, M.; Ooe, M.; Ebitani, K.; Kaneda, K. Chem.
Commun. 2002, 52-53. (e) Chiba, K.; Kono, Y.; Kim, S.; Nishimoto, K.;
Kitano, Y.; Tada, M. Chem. Commun. 2002, 1766-1767. (f) Ko¨llhofer,
A.; Plenio, H. Chem.-Eur. J. 2003, 9, 1416-1425. (g) Bergbreiter, D. E.;
Koshti, N.; Franchina, J. G.; Frels, J. D. Angew. Chem., Int. Ed. 2000, 39,
1040-1042.
(9) (a) Abatjoglou et al. (Abatjoglou, A. G.; Peterson, R. R.; Bryant, D. R.
Chem. Ind. 1996, 68, 133-139) describe such separations as ‘phase
decantantions’ and report how they can be used with low molecular weight
catalysts and products. (b) Bergbreiter, D. E.; Osburn, P. L.; Smith, T.; Li,
C.; Frels, J. D. J. Am. Chem. Soc. 2003, 125, 6254-6260. (c) Deng, G.-J.;
Fan, Q.-H.; Chen, X.-M.; Liu, D.-S.; Chan, A. S. C. Chem. Commun. 2002,
1570-1571. (d) Scurto, A. M.; Aki, S. N. V. K.; Brennecke, J. F. J. Am.
Chem. Soc. 2002, 124, 10276-10277.
(1) (a) Bergbreiter, D. E. Chem. ReV. 2002, 102, 3345-3383. (b) Bergbreiter,
D. E. J. Polym. Sci., Polym. Chem. Ed. 2001, 39, 2351-2363.
(2) Representative examples where solvent precipitation is used to recover
catalysts bound to polymers such as poly(alkene oxide)s, polystyrenes, and
chiral polymers can be found in recent reviews: (a) Dickerson, T. J.; Reed,
N. N.; Janda, K. D. Chem. ReV. 2002, 102, 3325-3343. (b) Toy, P. H.;
Janda, K. D. Acc. Chem. Res. 2000, 33, 546-554. (c) Bergbreiter, D. E.
In Chiral Catalyst Immobilization and Recycling; De Vos, D. E., Vankele-
com, I. F. J., Jacobs, P. A., Eds.; Wiley-VCH: Weinheim, Germany, 2000;
pp 43-80. (d) Fan, O.-H.; Li, Y.-M.; Chan, A. S. C. Chem. ReV. 2002,
102, 3385-3465.
(3) Malmstro¨m, T.; Andersson, C. J. Mol. Catal., A 2000, 157, 79-82.
(4) Osburn, P. L.; Bergbreiter, D. E. Prog. Polym. Sci. 2001, 26, 2015-2081.
(5) (a) Bergbreiter, D. E.; Caraway, J. W. J. Am. Chem. Soc. 1996, 118, 6092-
6093. (b) Huang, X.; Witte, K. L.; Bergbreiter, D. E.; Wong, C. H. AdV.
Synth. Catal. 2001, 343, 675-681. (c) Bergbreiter, D. E.; Case, B. L.; Liu,
Y.-S.; Caraway, J. W. Macromolecules 1998, 31, 6053-6062.
9
8244
J. AM. CHEM. SOC. 2003, 125, 8244-8249
10.1021/ja0349498 CCC: $25.00 © 2003 American Chemical Society