CLUSTER
Polyfluorinated Cyclopentadienones as Lewis Acids
1541
(b) Chase, P.; Jurca, T.; Stephan, D. W. Chem. Commun.
2008, 1701.
(8) Geier, S. J.; Gille, A. L.; Gilgert, T. M.; Stephan, D. W.
Inorg. Chem. 2009, 48, 10466.
(9) Inés, B.; Palomas, D.; Holle, S.; Steinberg, S.; Nicasio, J. A.;
Alcarazo, M. Angew. Chem. Int. Ed. 2012, 51, 12367.
(10) Cabrera, L.; Welch, G. C.; Masuda, J. D.; Wei, P.; Stephan,
D. W. Inorg. Chim. Acta 2006, 359, 3066.
(11) Iglesias-Sigüenza, J.; Alcarazo, M. Angew. Chem. Int. Ed.
2012, 51, 1523.
(12) Dickson, R. S.; Wilkinson, G. J. Chem. Soc. 1964, 2699.
(13) It has been demonstrated that the primary attack takes place
at the carbon at the position α to the carbonyl group, but even
at low temperatures this intermediate rearranges to the
thermodynamically more stable 2, See: (a) Roundhill, D. M.;
Wilkinson, G. J. Org. Chem. 1970, 35, 3561. (b) Burk, M. J.;
Calabrese, J. C.; Davison, F.; Harlow, R. L.; Roe, D. C.
J. Am. Chem. Soc. 1991, 113, 2209.
fluorinated boranes or even with ketone 1, is responsible
for this lack of reactivity.
In conclusion, these preliminary results demonstrate that
polyfluorinated ketone 9 can form FLPs in the presence of
bulky phosphines. However, the ‘frustration level’
achieved by ketone 9 in combination with phosphines is
insufficient to promote the activation of small molecules
such as dihydrogen. The synthesis and design of new or-
ganic Lewis acids with potential applications in FLP
chemistry are currently under investigation in our labora-
tory. These species are interesting since they might create
bridges between two synthetically very powerful areas of
chemistry, namely FLPs and organocatalysis.
Acknowledgment
(14) Crystallographic data for compounds 6, 7, 8, 11, 12, and 14
have been deposited with the accession numbers CCDC
999847, 999844, 999846, 999848, 999843 , and 999845,
respectively, and can be obtained free of charge from the
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; Fax: +44(1223)336033;
E-mail: deposit@ccdc.cam.ac.uk; Web site:
Generous support from the Fonds der Chemischen Industrie (Do-
zentenstipendium to M.A.) and the European Research Council
(ERC Starting Grant to M.A.) is gratefully acknowledged. We also
thank Professor Alois Fürstner for his generous support, and the
NMR department of our institute for its assistance.
Supporting Information for this article is available online
(15) (a) Bauer, R.; Liu, D.; Ver Heyen, A.; De Schryver, F.; De
Feyter, S.; Müllen, K. Macromolecules 2007, 40, 4753. A
new procedure has been recently reported, see: (b) Löser, P.;
Winzenburg, A.; Faust, R. Chem. Commun. 2013, 49, 9413.
(16) In a typical reaction, the appropriate phosphine was added in
one portion to a solution of ketone 9 in toluene at r.t., and the
resulting slurry was stirred at r.t. overnight. The solvent was
then removed under vacuum and the crude product washed
with pentane.
at
10.1055/s-00000083.SunpfgIpi
o
o
nr
i
References
(1) (a) Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D.
W. Science 2006, 314, 1124. (b) Kenward, A. L.; Piers, W.
E. Angew. Chem. Int. Ed. 2008, 47, 38. For a recent review
on the chemistry of frustrated Lewis pairs see: (c) Stephan,
D. W.; Erker, G. Angew. Chem. Int. Ed. 2010, 49, 46. For
metal-free catalyzed hydrogenation see: (d) Spies, P.;
Schwendermann, S.; Lange, S.; Kehr, G.; Fröhlich, R.;
Erker, G. Angew. Chem. Int. Ed. 2008, 47, 7543. (e) Chase,
P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew. Chem.
Int. Ed. 2007, 46, 8050. (f) Greb, L.; Daniliuc, C.-G.;
Bergander, K.; Paradies, J. Angew. Chem. Int. Ed. 2013, 52,
5876. (g) Nicasio, J. A.; Steinberg, S.; Inés, B.; Alcarazo, M.
Chem. Eur. J. 2013, 19, 11016.
(2) (a) Rosorius, C.; Kehr, G.; Fröhlich, R.; Grimme, S.; Erker,
G. Organometallics 2011, 30, 4211. (b) Theuergarten, E.;
Schlösser, J.; Schluns, D.; Freytag, M.; Daniliuc, C. G.;
Jones, P. G.; Tamm, M. Dalton Trans. 2012, 41, 9101.
(3) Cárdenas, A. J. P.; Culotta, B. J.; Warren, T. H.; Grimme, S.;
Stute, A.; Fröhlich, R.; Kehr, G.; Erker, G. Angew. Chem.
Int. Ed. 2011, 50, 7567.
(4) (a) Dureen, M. A.; Welch, G. C.; Gilbert, T. M.; Stephan,
D. W. Inorg. Chem. 2009, 48, 9910. (b) Inés, B.; Holle, S.;
Goddard, R.; Alcarazo, M. Angew. Chem. Int. Ed. 2010, 49,
8389. (c) Alcarazo, M. Dalton Trans. 2011, 40, 1839.
(d) Palomas, D.; Holle, S.; Inés, B.; Bruns, H.; Goddard, R.;
Alcarazo, M. Dalton Trans. 2012, 41, 9073.
(5) (a) Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118,
9440. (b) Parks, D. J.; Blackwell, J. M.; Piers, W. E. J. Org.
Chem. 2000, 65, 3090. (c) Alcarazo, M.; Gomez, C.; Holle,
S.; Goddard, R. Angew. Chem. Int. Ed. 2010, 49, 5788.
(d) Chen, D.; Leich, V.; Pang, F.; Klankermayer, J. Chem.
Eur. J. 2012, 18, 5184.
12: yellow solid; yield: 66 mg (86%); mp 235 °C (decomp.);
IR (neat): 742, 856, 926, 991, 1053, 1093, 1104, 1347, 1402,
1494, 1504, 1523, 1978 cm–1; 1H NMR (400 MHz, CD2Cl2):
δ = 1.40 (d, J = 14.7 Hz, 27 H); 13C NMR (151 MHz,
CD2Cl2): δ = 29.2, 42.1 (d, J = 33.9 Hz), 77.9, 96.1, 104.2,
113.6 (m), 114.0 (m), 137.2 (dm, J = 250.4 Hz), 137.9
(dm, J = 251.8 Hz), 139.6 (dm, J = 249.0 Hz), 139.9 (dm,
J = 249.0 Hz), 144.7 (dm, J = 246.2 Hz), 145.5 (dm,
J = 243.4 Hz); 31P NMR (162 MHz, CD2Cl2): δ = 106.7;
19F NMR (282 MHz, CDCl3): δ = –(165.21–165.02) (m, 4
F), –(164.00–163.80) (m, 4 F), –(158.86–158.52) (m, 4 F),
–(140.25–140.14) (m, 4 F), –(139.00–138.85) (m, 4 F);
HRMS: m/z [M + Na]+ calcd for C41H27OF20PNa:
969.137244; found: 969.137923.
14: yellow solid; yield: 50 mg (93%); mp 229 °C (decomp.);
IR (neat): 790, 852, 864, 894, 924, 969, 991, 1060, 1094,
1106, 1287, 1358, 1403, 1475, 1490, 1501, 1522, 1535,
2862, 2933; 1H NMR (400 MHz, CD2Cl2): δ = 0.83–1.00
(m, 4 H), 1.07–1.27 (m, 6 H), 1.38–1.72 (m, 10 H), 2.01–
2.12 (m, 2 H), 7.26–7.29 (m, 1 H), 7.32–7.38 (m, 3 H), 7.44–
7.48 (m, 1 H), 7.55–7.57 (m, 3 H), 7.70–7.74 (m, 1 H); 13
C
NMR (101 MHz, CD2Cl2) (partial): δ = 25.7 (d, J = 1.4 Hz),
26.3 (d, J = 3.8 Hz), 26.9 (d, J = 13.3 Hz), 37.2 (d, J = 51.9
Hz), 83.2, 95.5, 103.5, 113.0, 114.0, 127.7 (d, J = 11.4 Hz),
129.2, 129.7, 130.3, 131.9 (d, J = 10.0 Hz), 134.6 (d,
J = 14.3 Hz), 134.7, 137.5 (dm, J = 242.7 Hz), 137.9 (dm,
J = 247.0 Hz), 139.5 (d, J = 2.4 Hz), 144.7 (dm, J = 242.7
Hz), 145.5 (dm, J = 240.3 Hz), 148.5 (d, J = 8.6 Hz); 31
P
NMR (162 MHz, CD2Cl2): δ = 80.5; 19F NMR (282 MHz,
CDCl3): δ = –(165.21–165.09) (m, 4 F), –(163.99–163.84)
(m, 4 F), –159.68 (t, J = 21.1 Hz, 2 F), –159.36 (t, J = 21.0
Hz, 2 F), –(140.52–140.34) (m, 4 F), –139.77 (dt, J = 25.0,
8.7 Hz, 4 F); HRMS: m/z [M + Na]+ calcd for
(6) Holschumacher, D.; Bannenberg, T.; Hrib, C. G.; Jones, P.
G.; Tamm, M. Angew. Chem. Int. Ed. 2008, 47, 7428.
(7) (a) Sumerin, V.; Schulz, F.; Nieger, M.; Leskelä, M.; Repo,
T.; Rieger, B. Angew. Chem. Int. Ed. 2008, 47, 6001.
C53H31OF20PNa: 1117.168543; found: 1117.169092.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2014, 25, 1539–1541