O-Alkynyloximes as Muscarinic Agonists
J ournal of Medicinal Chemistry, 1998, Vol. 41, No. 17 3231
(10) Sanders, K. B.; Thomas, A. J .; Pavia, M. R.; Davis, R. E.;
Coughenour, L. L.; Myers, S. L.; Fisher, S.; Moos, W. H.
Cholinergic agents: aldehyde, ketone and oxime analogues of
the muscarinic agonist UH5. BioMed. Chem. Lett. 1992, 2, 803-
808.
(11) Plate, R.; Plaum, M. J . M.; de Boer, T.; Andrews, J . S. Synthesis
and muscarinic M3 pharmacological activities of 1-azabicyclo-
[2.2.2]octan-3-one oxime derivatives. BioMed. Chem. 1996, 4,
239-245.
(12) Tecle, H.; Lauffer, D. J .; Mirzadegan, T.; Moos, W. H.; Moreland,
D. W.; Pavia, M. R.; Schwarz, R. D.; Davis, R. E. Synthesis and
SAR of bulky 1-azabicylco[2.2.1]-3-one oximes as muscarinic
receptor subtype selective agonists. Life Sci. 1993, 52, 505-511.
(13) Grochowski, E.; J urczak, J . A new synthesis of O-alkylhydroxy-
lamines. Synthesis 1976, 682-684.
(14) Mitsunobu, O. The use of diethyl azodicarboxylate and triph-
enylphosphine in synthesis and transformation of natural
products. Synthesis 1981, 1-28.
(15) Leclerc, G.; Bieth, N.; Schwartz, J . Synthesis and â-adrenergic
blocking activity of new aliphatic oximes ethers. J . Med. Chem.
1980, 23, 620-624.
(16) Galons, H.; Fiet, J .; Combet-Farnoux, C.; Miocque, M.; Bram,
G. Organic syntheses without solvent: preparation of alkoxyph-
thalimides and of alkoxylamines. Mol. Cryst. Liq. Cryst. Inc.
Nonlin. Opt. 1988, 161, 521-528.
(17) Lauffer, D. J .; Moos, W. H. Azabicyclo and azacyclo oxime and
amine cholinergic agents and pharmaceutically acceptable salts
thereof. European Patent Appl. EP 0445 731 A1, 1991, 1-32.
(18) Wolfe, B. B.; Yasuda, R. P. Development of selective antisera
for muscarinic cholinergic receptor subtypes. Ann. N. Y. Acad.
Sci. 1995, 151, 186-193.
(19) Levey, A. I.; Kitt, C. H.; Simonds, W. F.; Price, D. L.; Brann, M.
R. Identification and localization of muscarinic acetylcholine
receptor proteins with subtype-specific antibodies. J . Neurosci.
1991, 11, 3218-3226.
methylpiperidinone fragment and the O-substituted side chain
for each oxime. Verloop’s STERIMOL substituent parameters
(L, B1-B5) were calculated using the computational chemistry
program Physical Properties! Pro Revision 2.3 (CSW, Fairfield,
CA). L refers to the substituent length measured along the
axis formed by the bond between the substituent and the atom
to which it is attached. B1-B5 are radii extending perpen-
dicular to L1 and are also perpendicular to each other. B1
and B5 give the minimum and maximum widths of the
substituents, respectively. As defined in the program, the
following pairs (B1, B4) and (B2, B3) are in opposite directions.
Sta tistica l Meth od s. Multiple linear regression analyses
were carried out using SPSS for Windows (SPSS Inc., Chicago,
IL). The following statistical parameters were determined for
each regression equation: 95% confidence interval variables,
correlation coefficient r, measure of explained variance r2,
Fisher significance ratio F, and standard error SE. Cross-
validated r2 and SE were determined using the QSAR module
of SYBYL 6.2.
Ack n ow led gm en t. This work has been supported
by a grant (RP920376) from the National University of
Singapore. Rong Xu gratefully acknowledges the Na-
tional University of Singapore for granting her a
research scholarship.
Su p p or tin g In for m a tion Ava ila ble: Tables containing
physical data of 6-14 and 15-23 and QSAR parameters of
24a ,b-34a ,b (4 pages). Ordering information is given on any
current masthead page.
(20) Peralta, E. G.; Ashkenazi, A.; Winslow, J . W.; Smith, D. H.;
Ramachandran, J .; Capon, D. J . Distinct primary structure,
ligand binding properties and tissue-specific expression of four
human muscarinic acetylcholine receptors. EMBO J . 1987, 6,
3923-3929.
Refer en ces
(1) (a) Growden, J . H. Muscarinic agonists in Alzheimer’s Disease.
Life Sci. 1997, 60, 993-998. (b) Muller, D. M.; Mendla, K.;
Farber, S. A.; Nitsch, R. M. Muscarinic receptor agonists increase
the secretion of the amyloid precursor protein ectodomain. Life
Sci. 1997, 60, 985-991. (c) J aen, J .; Barrett, S.; Brann, M.;
Callahan, M.; Davis, R.; Doyle, P.; Eubanks, D.; Lauffer, D.;
Lauffer, L.; Lipinski, W.; Moreland, D.; Nelson, C.; Raby, C.;
Schwarz, R.; Spencer, C.; Tecle, H. In vitro and in vivo evaluation
of the subtype selective muscarinic agonist PD 151832. Life Sci.
1995, 56, 845-852. (d) J aen, J .; Moos, W. H.; J ohnson, G.
Cholinomimetics and Alzheimer’s Disease. BioMed. Chem. Lett.
1992, 2, 777-780.
(2) (a) Whitehouse, P. J .; Price, D. L.; Sruble, R. G.; Clark, A. W.;
Coyle, J . T.; DeLong, M. R. Alzheimer’s Disease and senile
dementia: Loss of neurons in the basal forebrain. Science 1982,
215, 1237-1239. (b) Davies, P. Neurotransmitter related en-
zymes in senile dementia of the Alzheimer’s type. Brain Res.
1979, 171, 319-327.
(3) (a) Coyle, J . T.; Price, D. L.; DeLong, M. R. Alzheimer’s
Disease: A disorder of cortical cholinergic innervation. Science
1983, 219, 1184-1190. (b) Davis, P.; Maloney, A. F. J . Selective
loss of central cholinergic neurons. Lancet 1976, 2, 1403. (c)
Perry, E. K.; Perry, R. H.; Blessed, G.; Tomlinson, B. E. Necropsy
evidence of central cholinergic deficits in senile dementia. Lancet
1977, 1, 189.
(4) (a) J ohns, C. A.; Haroutunian, V.; Davis, B. M.; Horvath, T. B.;
Thomas, B.; Mohs, R. C.; Davis K. L. Acetylcholinesterase
inhibitors in Alzheimer’s Disease and animal models. Proc. Meet.
Int. Study Group Treat. Mem. Disord. Assoc. Aging, 3rd;
Cambridge, MA, 1984; pp 349-373. (b) Huff, F. J .; Mickel, S.
F.; Corkin, S.; Growden, J . H. Cognitive functions affected by
scopolamine in Alzheimer’s Disease and normal aging. Drug.
Dev. Res. 1988, 12, 271-278. (c) Bartus, R. T.; Dean, R. L.; Beer,
B. An evaluation of drugs for improving memory in aged
monkeys: implications for clinical trials in humans. Psycho-
pharmacol. Bull. 1983, 19, 168-184.
(21) Dorje, F.; Levey, A. I.; Brann, M. R. Immunological detection of
muscarinic receptor subtype proteins (m1-M5) in rabbit periph-
eral tissues. Mol. Pharmacol. 1991, 40, 459-462.
(22) Watson, M.; Yamamura, H.; Roeske, W. R. [3H]Pirenzepine and
(-)-[3H]quinuclidinyl benzilate binding to rat cerebral cortex and
cardiac muscarinic cholinergic sites. Characterization and regu-
lation of agonist binding to putative muscarinic subtypes. J .
Pharmacol. Exp. Ther. 1986, 237, 411-418.
(23) Sim, M. K.; Lim, B. C. Presence of an endothelial esterase in
the rat aorta: effects on the actions of ester and nonester
muscarinic antagonists. Endothelium 1993, 1, 109-114.
(24) J aiswal, N.; Lambrecht, G.; Mutschler, E.; Tacke, R.; Malik, K.
U. Pharmacological characterization of the vascular muscarinic
receptors mediating relaxation and contraction in rabbit aorta.
J . Pharmacol. Exp. Ther. 1991, 258, 842-850.
(25) Hansch, C.; Leo, A. Substituent Constants for Correlation
Analysis in Chemistry and Biology; J ohn Wiley & Sons: New
York, 1979; pp 69-167.
(26) Tute, M. S. History and Objectives of Quantitative Drug Design.
In Comprehensive Medicinal Chemistry; Hansch, C., Sammes,
P. G., Taylor, J . B., Eds.; Pergamon Press: New York, 1990; Vol.
4, pp 1-28.
(27) Connolly, M. L. Solvent accessible surfaces of proteins and
nucleic acids. Science 1983, 221, 709-713.
(28) Verloop, A.; Hoogenstraaten, W.; Tipker, J . Development and
Application of New Steric Substituent Parameters in Drug
Design. In Drug Design; Ariens E. J ., Eds.; Academic Press: New
York, 1976; Vol. 7, pp 165-207.
(29) Shapiro, G.; Floersheim, P.; Amstutz, R.; Boddeke, H.; Bolliger,
G.; Cottens, S.; Enz, A.; Gmelin, G.; Gull, P.; Supavilai, P.
BioMed. Chem. Lett. 1992, 2, 815-820.
(30) Lowry, O. H.; Rosebrough, N. J .; Far, A. L.; Randall, R. J . Protein
measurements with the Folin Phenol Reagent. J . Biol. Chem.
1951, 193, 265-275.
(31) McPherson, G. A. Analysis of radioligand binding experiments.
A collection of computer programs for the IBM PC. J . Pharmacol.
Methods 1985, 14, 213-228.
(5) Nitsch, R. M.; Slack, B. E.; Wurtman, R. J .; Growdon, J . H.
Release of Alzheimer amyloid precursor derivatives stimulated
by activation of muscarinic acetylcholine receptors. Science 1992,
258, 304-307.
(6) Caulfield, M. D. Muscarinic receptors - characterization, cou-
pling and function. Pharmacol. Ther. 1993, 58, 319-379.
(7) Eglen, R. M.; Watson, N. Selective muscarinic receptor agonists
and antagonists. Pharmacol. Toxicol. 1996, 78, 59-68.
(8) Kenakin, T. P.; Bond, R. A.; Bonner, T. I. Definition of pharma-
cological receptors. Pharmacol. Rev. 1992, 44, 351-362.
(9) Bromidge, S. M.; Brown, F.; Cassidy, F.; Clark, M. S. G.; Dabbs,
S.; Hawkins, J .; Loudon, J . M.; Orlek, B. S.; Riley, G. J . A novel
and selective class of azabicyclic muscarinic agonists incorporat-
ing an N-methoxy imidoyl halide or nitrile functionality. BioMed.
Chem. Lett. 1992, 2, 791-796.
(32) Cheng, Y. C.; Prusoff, W. H. Relationship between the inhibition
constant (Ki) and the concentration of inhibitor which causes
50% inhibition (I50) of enzymatic reaction. Biochem. Pharmacol.
1973, 22, 3099-3108.
(33) Tallarida, R. J .; Murray, R. B. Manual of Pharmacologic
Calculations with Computer Programs; Springer Verleg: New
York, 1987.
(34) Morris, R. G. M. Spatial localization does not require the
presence of local cues. Learn. Motiv. 1981, 12, 239-249.
J M9708588