198
P. Cardillo et al.
10. Cardillo P, Gigante L, Lunghi A, Fraleoni-Morgera A, Zanirato P.
Hazardous N-containing system: thermochemical and computa-
tional evaluation of the intrinsic molecular reactivity of some aryl
azides and diazides. New J Chem. 2008;32:47–53.
30. Dyall LK, Kemp JE. The infrared spectra of aryl azides. Aust
J Chem. 1967;20:1395–402.
31. Von E, Doering W, De Puy CH. Diazocyclopentadiene. J Am
Chem Soc. 1953;75:5955–7.
11. Salatelli E, Zanirato P. The conversion of furan-, thiophene- and
selenophene-2-carbonyl azides into isocyanates: a DSC analysis.
ARKIVOC 2002;xi:6–16.
32. Boyer JH, Toggweiler U, Stoner GA. Spectrophotometric rela-
tionships between furoxanes and nitroso compounds. J Am Chem
Soc. 1957;79:1748–51.
12. Stadlbauer W, Hojas G. Study of the thermal behavior of azi-
dohetarenes with differential scanning calorimetry. J Biochem
Biophys Methods. 2002;53:89–99.
33. Smith PAS, Hall JH. Kinetic evidence for the formation of azene
(electron-deficient nitrogen) intermediates from aryl azides. J Am
Chem Soc. 1962;84:480–5.
13. Smith PAS. Aryl and heteroaryl azides and nitrenes. In: Scriven
EFV, editor. Azides and nitrenes, reactivity and utility. Orlando:
Academic Press; 1984. p. 95–204.
14. Schuster GB, Platz MS. Photochemistry of phenyl azide. Adv
Photochem. 1992;17:69–73.
15. Hrovat DA, Waali EE, Thatcher Borden W. Ab initio calculations
of the singlet-triplet energy difference in phenylnitrenes. J Am
Chem Soc. 1992;114:8698–9.
34. Barton DHR, Sammes PG, Weingarten GG. Photochemical
transformations. Part XXVIII. Aryl azides as potential photo-
sensitive protecting groups. J Chem Soc C. 1971;721–8.
35. Minato M, Lahti PM. Intramolecular exchange coupling of
arylnitrenes by oxygen. J Phys Org Chem. 1994;7:495–502.
36. Watson ES, O’Neill MJ, Justin J, Brenner N. A differential
scanning calorimeter for quantitative differential thermal analy-
sis. Anal Chem. 1964;36:1233–8.
16. Albini A, Bettinetti G, Minoli G. The effect of the p-nitro group
on the chemistry of phenylnitrene. A study via intramolecular
trapping. J Chem Soc Perkin. 1999; 1:2803–7.
37. Seaton WH. Group contribution method for predicting the
potential of a chemical composition to cause an explosion.
J Chem Educ. 1989;66:A137.
17. Kvaskoff D, Bednarek P, George L, Pankajakshan S, Wentrup C.
Different behavior of nitrenes and carbenes on photolysis and
thermolysis: formation of azirine, ylidic cumulene, and cyclic
ketenimine and the rearrangement of 6-phenanthridylcarbene to
9-phenanthrylnitrene. J Org Chem. 2005;70:7947–55.
18. Fraleoni-Morgera A, Zanirato P. BF3.OEt2-promoted synthesis
of acridines via N-aryl nitrenium-BF3 ions generated by disso-
ciation of 2-oxo azidoarenes in benzene. ARKIVOC. 2006;1:
111–20.
38. Frurip D, Britton L, Fenlon W, Going J, Harison BK, Niemier J,
et al. The role of ASTM E27 methods in hazard assessment: Part
I. Thermal stability, compatibility, and energy release estimation
methods. Process Saf Prog. 2004;23:266–78.
39. Cardillo P, Gigante L, Lunghi A, Di Bari C, Ludovisi G. La
termodinamica per la sicurezza chimica: criteri di previsione
`
dell’instabilita termica. Riv Combust. 2002;56:209–23.
´
40. Sabbah R, El Watik L. Etude thermodynamique de l’acridone et
de la thioxanthone. Can J Chem. 1992;70:24–8.
41. Dyall LK, Karpa GJ. Mass spectra of 3-phenyl-2,1-benzisoxaz-
oles. Org Mass Spectrom. 1989;24:70–3.
19. Dyall LK, Kemp JE. Neighbouring-group participation in pyro-
lysis of aryl azides. J Chem Soc B. 1968; 976–9.
20. Dyall LK, Holmes A-L. Pyrolysis of aryl azides. IX. Azomethines
as weak neighboring groups. Aust J Chem. 1988;41:1677–86.
21. Hall JH, Behr FE, Reed RL. Cyclization of 2-azidobenzophe-
nones to 3-phenylanthranils. Examples of an intramolecular
1,3-dipolar addition. J Am Chem Soc. 1972;94:4952–8.
22. Noelting E, Michel O. Direkte ueberfu¨hrung von aminen in
42. Doppler T, Schmid H, Hansen H-J. Zur photochemie von 2,
1-benzisoxazolen (anthranilen) und thermischen und photo-
chemischen umsetzungen von 2-azido-acylbenzolen in stark sa-
¨
urer losung. Helv Chim Acta. 1979;62:271–303.
43. Boulton AJ, Gray ACG, Katritzky AR. Heterocyclic rearrange-
ments. Part. IV, Furoxan- and furazan-benzofuroxan. J Chem
Soc. 1965;5958–64.
44. Rauhut G, Eckert F. A computational study on the mechanism
and kinetics of the pyrolysis of 2-nitrophenyl azide. J Phys Chem
A. 1999;103:9086–92.
¨
diazoimide mittels stickstoffwasserstosaure. Chem Ber. 1893;26:
86–92.
23. Dyall LK. Pyrolysis of aryl azides. VII. Interpretation of Hammett
correlations of rates of pyrolysis of substituted 2-nitroazidobenz-
enes. Aust J Chem. 1986;39:89–101.
¨
45. Leitao MLP, Pilcher G, Acree WE Jr, Zvaigzne AI, Tucker SA,
24. Ardakani MA, Smalley RK, Smith RH. 1H- and 2H-indazoles by
thermal and photolytic decomposition of o-azidobenzoic acid and
o-azidobenzaldehyde derivatives. J Chem Soc Perkin. 1983;1:
2501–6.
Ribeiro Da Silva MDMC. Enthalpies of combustion of phenazine
N-oxide, phenazine, benzofuroxan, and benzofurazan: the disso-
ciation enthalpies of the (N–O) bonds. J Chem Thermodyn.
1990;22:923–8.
25. Smolinsky G. Notes—The vapor phase pyrolysis of several
subsituted azidobenzenes. J Org Chem. 1961;26:4108–10.
26. Sakai K, Anselme J-P. Rational synthesis of 2-aminoindazole.
J Org Chem. 1972;37:2351–2.
46. Gaughran RJ, Picard JP, Kaufman JVR. Contribution to the
chemistry of benzofuroxan and benzofurazan derivatives. J Am
Chem Soc. 1954;76:2233–6.
47. Acree WE Jr, Pilcher G, Ribeiro da Silva MDMC. The dissoci-
ation enthalpies of terminal (NO) bonds in organic compounds.
J Phys Chem. 1982;34:560–2.
48. Zhang C, Shu Y, Huang Y, Zhao X, Dong H. Investigation of
correlation between impact sensitivities and nitro group charges
in nitro compounds. J Phys Chem B. 2005;109:8978–82.
¨
27. Meisenheimer J, Senn O, Zimmermann P. Uber die oxime des
o-amino-benzo- und acetophenons. Chem Ber B. 1927;60:
1736–48.
28. Smith PAS, Brown BB, Putney RK, Reinisch RF. The synthesis
of heterocyclic compounds from aryl azides. iii. some six-mem-
bered rings and some azidobiaryls. J Am Chem Soc. 1953;75:
6335–7.
29. Monge A, Palop JA, Lopez de Cerain A, Senador V, Martinez-
Crespo FJ, Sainz Y, et al. Hypoxia-selective agents derived from
quinoxaline 1,4-di-N-oxides. J Med Chem. 1995;38:1786–92.
123