ϩ 1)ϩ, 579 (64Zn2L2 ϩ 1)ϩ with correct isotopic distribution. m/z (ϩve
ES) 1161 (Mϩ), 874 and 581.
Interestingly, tetrahedral co-ordination at Zn() in [Zn4(L)4]
is highly distorted with rather acute N–Zn–Sterminal and N–Zn–
Sbridging angles, N1B–Zn1–S7B 91.27(10), N1C–Zn2–S7C
‡ Crystal data: C44H60N4S8Zn4ؒ0.5C4H10O, M = 1199.98, triclinic, space
¯
group P1, a = 13.926(3), b = 14.593(3), c = 14.631(5) Å, α = 88.90(2),
92.62(11),
91.70(11),
91.17(11),
N1D–Zn3–S7D
N1B–Zn1–S4B
N1D–Zn3–S4D
91.97(11),
88.86(11),
90.35(10),
N1A–Zn4–S7A
N1C–Zn2–S4C
N1A–Zn4–S4A
β = 88.70(2), γ = 62.674(14)Њ, U = 2640.7(12) Å3, T = 220 K, Z = 2,
Dc = 1.509 g cmϪ3, λ(Cu-Kα) = 1.54184 Å, µ = 5.297 mmϪ1. 9255 unique
data measured and used in all calculations. A molecule of Et2O was
found to be half-occupied and disordered over two sites. Final wR(F2)
was 0.104, R1 = 0.0448. CCDC reference number 186/1354. See http://
www.rsc.org/suppdata/dt/1999/1041 for crystallographic files in .cif
format.
88.69(10)Њ, and expanded Sbridging–Zn–Sterminal angles, S7B–Zn1–
S4B 125.93(6), S4C–Zn2–S7C 125.03(6), S4D–Zn3–S7D
122.29(5), S4A–Zn4–S7A 129.79(5)Њ. This distortion is prob-
ably due to the steric factors inherent in the formation of the
tetranuclear complex and within individual [ZnL] units. The
aromatic rings orientate themselves exo to the central Zn4S8
core and are arranged alternately up and down (Fig. 1b) due to
the inversion of successive ligand units around the metallo-
cyclic [Zn4S4] centre. This also reduces the steric interactions
between the aromatic rings. There is no evidence of π–π stack-
ing either within or between molecules. FAB and electrospray
mass spectrometry confirm the integrity of the complex, at least
in part, in solution with molecular ions observed for the
monomer, dimer, trimer and tetramer.18
1 H. Eklund and C.-I. Bränden, in Zinc Enzymes, ed. T. G. Spiro,
Wiley, New York, 1983, p. 124.
2 Y. Pocker, in Metal Ions In Biological Systems, ed. H. Sigel and
A. Sigel, Dekker, New York, 1989, vol. 25, p. 335; H. Eklund and
C.-I. Bränden, in Active Sites of Enzymes, ed. F. A. Jurnak and
A. McPherson, Biological Macromolecules and Assemblies, Wiley,
New York, 1987, vol. 3, ch. 2.
3 J. H. R. Kägi, S. R. Himmelhoch, P. D. Whanger, J. L. Bethune and
B. L. Vallee, J. Biol. Chem., 1973, 39, 127.
4 W. Kaim and B. Schwederski, Bioinorganic Chemistry: Inorganic
Elements In the Chemistry of Life, Wiley, New York, 1991, ch. 12.
5 B. Kaptein, L. Wang-Griffin, G. Barf and R. M. Kellogg, J. Chem.
Soc., Chem. Commun., 1987, 1457; B. Kaptein, G. Barf, R. M.
Kellogg and F. Van Bolhuis, J. Org. Chem., 1990, 55, 1890; R. M.
Kellogg and R. P. Hof, J. Chem. Soc., Perkin Trans. 1, 1996, 1651
and refs. therein.
Current work is aimed at further developing thiolate chem-
istry at Zn() and related biologically relevant metal ions.
Acknowledgements
6 C. Kimblin, T. Hascall and G. Parkin, Inorg. Chem., 1997, 36, 5680
We thank the EPSRC for support and the EPSRC Centre for
mass spectrometry at the University of Swansea.
and refs. therein.
7 A. J. Blake, A. Marin-Becerra, N. D. J. Branscombe, W.-S. Li,
S. Parsons, L. Ruiz-Ramirez and M. Schröder, Chem. Commun.,
1996, 2573.
Notes and references
8 K. S. Hagen, D. W. Stephan and R. H. Holm, Inorg. Chem., 1982,
21, 3928; A. Choy, D. Craig, I. Dance and M. Scudder, J. Chem.
Soc., Chem. Commun., 1982, 1246; I. Dance, J. Chem. Soc., Chem.
Commun., 1980, 818; I. Dance, J. Am. Chem. Soc., 1980, 102, 3445;
J. L. Hencher, M. A. Kahn, F. F. Said and D. G. Tuck, Polyhedron,
1985, 4, 1263; R. H. Holm and M. J. O’Connor, Prog. Inorg. Chem.,
1971, 14, 241; F. F. Sai and D. G. Tuck, Inorg. Chim. Acta, 1982, 59,
1.
9 T. Tuntulani, J. H. Reibenspies, P. J. Farmer and M. Y. Darensbourg,
Inorg. Chem., 1992, 31, 3497.
10 D. C. Goodman, T. Tuntulani, P. J. Farmer, M. Y. Darensbourg
and J. H. Reibenspies, Angew. Chem., Int. Ed. Engl., 1993, 32, 116;
C. A. Grapperhaus, T. Tuntulani, J. H. Reibenspies and M. Y.
Darensbourg, Inorg. Chem., 1998, 37, 4052.
11 W. J. Hu, D. Barton and S. J. Lippard, J. Am. Chem. Soc., 1973, 95,
467.
12 S. C. Shoner, K. J. Humphreys, D. Barnhart and J. A. Kovacs, Inorg.
Chem., 1995, 34, 5933.
13 D. T. Corwin, Jr. and S. A. Koch, Inorg. Chem., 1988, 27, 493.
14 A. J. Atkins, A. J. Blake and M. Schröder, J. Chem. Soc., Chem.
Commun., 1993, 1662; A. J. Atkins, A. J. Blake, D. Black, A. Marin-
Becerra, S. Parsons, L. Ruiz-Ramirez and M. Schröder, Chem.
Commun., 1996, 457.
15 G. J. Colpas, M. Kumar, R. O. Day and M. J. Maroney, Inorg.
Chem., 1990, 29, 4779.
† Synthesis of LH2 and Na2L. Benzylamine (5 g, 0.0467 mol) in
benzene (5 cm3) was placed in a Schlenk tube flushed with N2. Ethylene
sulfide (5.9 g, 0.098 mol) in benzene (5 cm3) was added dropwise and the
1
resulting solution stirred at 65 ЊC. After 48 h analysis by H and 13C
NMR spectroscopy confirmed that a mixture of starting material and
mono-substituted product was present. A further two equivalents of
ethylene sulfide (5.9 g, 0.098 mol) were added and the solution left
stirring under N2 at 65 ЊC. After a further 48 h, analysis by NMR
spectroscopy revealed that the reaction had gone to completion. The
bulk solution was filtered and the excess solvent removed in vacuo to
yield a foul-smelling yellow oil. The oil was redissolved in CH2Cl2, the
solution filtered through a plug of silica to remove polymeric impur-
ities, and the excess solvent removed in vacuo to yield a clear oil (5.32 g,
0.023 mol, 52%) which was stored under N2. IR spectroscopy νmax/cmϪ1
(neat) 3059w, 3025w, 2962m, 2935m, 2803m, 2552w, 1600w, 1493m,
1369w, 1293w, 1260m, 1109m, 1028, 734, 698m (Found: C, 57.35; H,
7.71; N, 5.81. C11H17NS2 requires C, 58.15; H, 7.49; N, 5.81%). δH
(CDCl3) 1.68 (2H, s, CH2SH), 2.64 (4H, m, NCH2CH2SH), 2.70 (4H,
m, NCH2CH2SH), 3.64 (2H, s, PhCH2N) and 7.34 (5H, m, H of Ph). δC
(CDCl3) 22.87 (CH2SH), 57.13 (NCH2CH2SH), 58.63 (PhCH2N),
127.28, 128.42 and 128.92 (CH of Ph) and 138.91 (ipso C). m/z (EI)
225 (Mϩ). CAUTION: The ligand has been found to cause severe
allergic reactions and contact with skin should be avoided.
Na2L was prepared in quantitative yield by reaction of NaH (0.127 g,
5.29 mmol) with LH2 (0.4 g, 1.76 mmol) in THF.
16 S. A. Mirza, M. A. Pressler, M. Kumar, R. O. Day and M. J.
Maroney, Inorg. Chem., 1993, 32, 977.
17 L. F. Lindoy and D. H. Busch, J. Chem. Soc., Chem. Commun., 1972,
683.
Preparation of [Zn4L4]. Reaction of Na2L with Zn(BF4)2 (1:1 molar
ratio) in THF gave a white solid after removal of the solvent. The solid
was dissolved in CHCl3 and the solution filtered to remove sodium salts.
The solution was reduced in volume and the complex crystallised by
addition of Et2O (Found: C, 44.25; H, 5.61; N, 4.44. Calc. for
18 C. K. Meng and J. B. Fenn, Org. Mass Spectrom., 1991, 26, 542.
C46H65N4S8O0.5Zn4: C, 44.04; H, 5.42; N, 4.67%). IR (KBr)/cmϪ1
:
3025w, 2921w, 2849w, 1629s, 1494s, 1452s, 1310m, 1095m, 1003m,
825m, 721w, 668w. m/z (ϩve FAB) 1156 (64Zn4L4)ϩ, 868 (64Zn3L3
Communication 9/01251F
1042
J. Chem. Soc., Dalton Trans., 1999, 1041–1042