F.-F. Lv et al. / Tetrahedron 64 (2008) 1918e1923
1923
move (ꢀ)-proline toward the hydrophilic domains in HLC. In
Acknowledgements
contrast, the similar hydrophobic property and polarity render
(ꢀ)-prolinol and substrate 1 stay in the microreactors in prox-
imity. As a result, the highly viscous HLC strictly prevents ex-
cess (ꢀ)-prolinol around 1 escaping from the microreactors
(Table 1, entry 5), thereby guarantees the reaction occurrence
with highest selectivity and large rate acceleration.
We are grateful for the financial support from National
Science Foundation of China (Nos. 20333080, 20332040,
20472091, 50473048, 20472092, 20403025, and 20672122),
The Ministry of Science and Technology of China (Grant
Nos. 2004CB719903, 2006CB806105, G2007CB808004 and
2007CB936001) and The Bureau for Basic Research of the
Chinese Academy of Sciences.
The changes in product distributions are also pronounced in
LLC but less than that in HLC. In view of the surfactant mol-
ecules aligned orderly (on average) with their long axes paral-
lel to one another, the substrate and the excess electron donors
would also reside in the ‘microreactors’ (Fig. 5b). Neverthe-
less, the softer walls of LLC may allow the substrate and elec-
tron donors to diffuse along the long axes slowly, resulting in
the ratio of 3/2 in LLC lower than that in HLC. Similarly, the
more flexible micelles show much weaker restriction in the
product distributions of all the cases under the same condi-
tions. In addition, the intramolecular hydrogen abstraction
may be favored to some extent in the looser microreactors
present in micelles.
Evidently, the ordered viscous LC can encapsulate the sub-
strate and electron donors together during photoirradiation. By
controlling the viscosity and close contact between substrates
and electron donors, the solution-like LC can be used as a
microreactor to direct the reaction pathway of ketone 1. Nev-
ertheless, the ee values for the intermolecular hydrogen ab-
straction product 3 obtained in this study were less than 5%
(Table 1). Such a low stereoselectivity should be related to
the multistep nature of the intermolecular photoreduction,9,10
in which both ketone 1 and the intermediate radical 5 possess
pro-chiral faces (Scheme 3). Although the LC is stiff enough
to restrict the translational motions of ketone 1 and the chiral
electron donors affording product 3 with high efficiency, it
cannot control their rotation efficiently. Moreover, the pro-chi-
ral faces of both ketone 1 and the intermediate radical 5 allow
subtracting hydrogen from their surrounding environment,
rather than from the chiral inductor, thereby resulting in low
enantioselectivity observed. To this end, we are actively per-
forming the photochemical reactions with simple intermedi-
ates in LC and willreport examples in due course.
References and notes
1. (a) Photochemistry in Constrained and Organized Media; Ramamurthy,
V., Ed.; VCH: New York, NY, 1991; (b) Molecular and Supramolecular
Photochemistry; Ramamurthy, V., Schanze, K. S., Eds.; Marcel Dekker:
New York, NY, 1999; Vol. 3; (c) Chiral Photochemistry; Inoue, Y.,
Ramamurthy, V., Eds.; Marcel Dekker: New York, NY, 2004.
2. (a) Weiss, R. G.; Ramamurthy, V.; Hammond, G. S. Acc. Chem. Res. 1993,
26, 530e536; (b) Whitten, D. G. Acc. Chem. Res. 1993, 26, 502e509; (c)
Turro, N. J. Acc. Chem. Res. 2000, 33, 637e646; (d) Sivaguru, J.;
Natarajan, A.; Kaanumalle, L. S.; Shailaja, J.; Uppili, S.; Joy, A.;
Ramamurthy, V. Acc. Chem. Res. 2003, 36, 509e521; (e) Tung, C. H.;
Wu, L. Z.; Zhang, L. P.; Chen, B. Acc. Chem. Res. 2003, 36, 39e47.
3. (a) Keller, H.; Hatz, R. Handbook of Liquid Crystals, 1st ed.; Chemie:
Weinheim, 1980; (b) Wang, L.-Y.; Liao, S.-S. Liquid Crystal Chemistry;
Science: Beijing, 1988.
4. Xu, J.-X.; Liu, T.-Q.; Guo, R. Acta Phys.-Chim. Sin. 2003, 19, 364e367.
5. (a) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.;
Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W.; McCullen,
S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114,
10834e10843; (b) Ciesla, U.; Froba, M.; Stucky, G.; Schuth, F. Chem.
¨
¨
Mater. 1999, 11, 227e234; (c) Jiang, X. C.; Xie, Y.; Lu, J.; Zhu, L. Y.;
He, W.; Qian, Y. T. Chem. Mater. 2001, 13, 1213e1218; (d) Rabatic,
B. M.; Pralle, M. U.; Tew, G. N.; Stupp, S. I. Chem. Mater. 2003, 15,
1249e1255.
6. (a) DePierro, M. A.; Guymon, C. A. Macromolecules 2006, 39, 617e626;
(b) DePierro, M. A.; Carpenter, K. G.; Guymon, C. A. Chem. Mater. 2006,
18, 5609e5617; (c) Lester, C. L.; Smith, S. M.; Jarrett, W. L.; Guymon,
C. A. Langmuir 2003, 19, 9466e9472; (d) McCormick, D. T.; Stovall,
K. D.; Guymon, C. A. Macromolecules 2003, 36, 6549e6558; (e) Lester,
C. L.; Colson, C. D.; Guymon, C. A. Macromolecules 2001, 34,
4430e4438; (f) Lester, C. L.; Smith, S. M.; Guymon, C. A. Macromole-
cules 2001, 34, 8587e8589; (g) Nees, D.; Wolff, T. Langmuir 1996, 12,
4960e4965.
7. (a) Nerbonne, J. M.; Weiss, R. G. J. Am. Chem. Soc. 1979, 101, 402e407;
(b) Hrovat, D. A.; Liu, J. H.; Turro, N. J.; Weiss, R. G. J. Am. Chem. Soc.
1984, 106, 5291e5295.
8. (a) Pirkle, W. H.; Rinaldi, P. L. J. Am. Chem. Soc. 1977, 99, 3510e3511;
(b) Verbit, L.; Halbert, T. R.; Patterson, R. B. J. Org. Chem. 1975, 40,
1649e1650; (c) Saeva, F. D.; Sharpe, P. E.; Olin, G. R. J. Am. Chem.
Soc. 1975, 97, 204e205; (d) Nakazaki, M.; Yamamoto, K.; Fujiwara, K.
Chem. Lett. 1978, 863e864.
3. Conclusion
The photochemical reaction of cyclohexyl phenyl ketone 1
within LC has been investigated to probe whether LC could be
used as a confined medium for selective photochemical reac-
tions. Studies on the product distributions of ketone 1 in the
absence and presence of electron donors reveal that LC not
only restricts the movement of the substrates and intermediates
but also encapsulates the substrates and electron donors to-
gether during photoirradiation. A comparison of the same re-
action in SDS micelle further evidence that LC provides
a much better constraint. By controlling the viscosity and close
contact between substrates and electron donors, the solution-
like LC can be used as a microreactor to direct the reaction
pathway of photochemical reactions.
9. (a) Cohen, S. G.; Chao, H. M. J. Am. Chem. Soc. 1968, 90, 165e173; (b)
Cohen, S. G.; Pardla, A.; Parsons, G. H. Chem. Rev. 1973, 73, 141e161;
(c) Lewis, F. D.; Johnson, R. W.; Johnson, D. E. J. Am. Chem. Soc. 1974,
96, 6090e6099; (d) Lewis, F. D.; Johnson, R. W. J. Am. Chem. Soc. 1972,
94, 8914e8916; (e) Padwa, A.; Eastman, D. J. Am. Chem.
Soc. 1969, 91, 462e467; (f) Stocker, J. H.; Kern, D. H. J. Chem. Soc.,
Chem. Commun. 1969, 204e205.
10. (a) Reynolds, J. L.; Erdner, K. R.; Jones, P. B. Org. Lett. 2002, 4,
917e919; (b) Shailaja, J.; Ponchot, K. J.; Ramamurthy, V. Org. Lett.
2000, 2, 937e940.
11. (a) Kalyanasundaram, K.; Thomas, J. K. J. Am. Chem. Soc. 1977, 99,
2039e2044; (b) Dong, D. C.; Winnik, M. A. Photochem. Photobiol.
1982, 35, 17e21.