Photoelectrochemistry of C60
J. Phys. Chem., Vol. 100, No. 41, 1996 16689
TABLE 3: Values of Photocurrent (I, nA) and the Quantum
Yields of the Fuller-SnO2 Electrodes with the Electrolytes
Containing 15 mmol‚L-1 AsA and Saturated N2 under 0.1 V
Bias Voltage
Acknowledgment. Financial support from the Climbing
Program (a National Fundamental Research Key Project of
China) and the National Natural Science Foundation of China
is greatly acknowledged.
electrode
Iobs(nA)
Iunit
C60/AA
1
2
3
4
270-430 450-600 550-750 500-700 1300-1900
3.4-5.4 5.6-7.5 6.9-9.4 6.3-8.8 16.3-23.8
References and Notes
(nA‚mm-2
quantum
yield (%)
)
(1) (a) Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley,
R. E. Nature 1985, 318, 162. (b) Kratschmer, W.; Lamb, L. D.; Fostirop-
oulous, K.; Huffman, D. R. Nature 1990, 347, 354.
1.2∼1.9 1.9∼2.6 2.4∼3.2 2.2∼3.0 5.6∼8.2
(2) (a) Hammond, G. S.; Kuck, V. J. Fullerenes. Presented at the 201st
national meeting of the American Chemical Society, Atlanta, April 14-
19, 1991. (b) Talian, C.; Ruani, G.; Zamboni, R. Fullerenes: Status and
PerspectiVes; World Scientific: Singaport, 1992. (c) Billups, W. E.;
Ciufolini, M. A. Buckminsterfullerenes; VCH: New York, 1993. (d) Koruga,
D.; Hameroff, S.; Withers, J.; Loutfy, R.; Sundareshan, M. Fullerene C60;
North-Holland: Amsterdam, 1993. (e) Kuzmany, H.; Fink, J.; Mehring,
M.; Roth, S. Progress in Fullerene research; World Scientific: Singapore,
1994.
to a certain extent at the surface pressure of 30 mN‚m-1. The
observed photocurrent should be a little higher than the ideal
monolayer C60-SnO2 electrode. But the value still can be used
as a standard when the effect of different substituent groups on
generation photocurrents for compounds 1-4 is taken into
comparison.
(3) (a) Baum R. Chem. Eng. News 1993, 22, 8. (b) Eickenbusch, H.
Ha¨rtwich, P. Fullerene: Analyse & Bewertung Zuku¨nftiger Technologien;
VDI Technologiezentrum: Du¨sseldorf, Germany, 1993. (c) Hirsch A. The
Chemistry of the Fullerenes; G. Thieme Verlag: Stuttgart, Germany, 1994.
(4) Miller, B.; Rosamilia, J. M.; Dabbagh, G.; Tycko, R.; Haddon, R.
C.; Muller, A. J.; Wilson, W.; Murphy, D. W.; Hebard, A. F. J. Am. Chem.
Soc. 1991, 113, 6291-6293.
(5) (a) Allemand, P.-M.; Koch, A.; Wudl, F.; Rubin, Y.; Diederich,
F.; Alvarez, M. M.; Anz, S. J.; Whetten R. L. J. Am. Chem. Soc. 1991,
113, 1050-1051. (b) Xie, Q.; Pe´rez-Cordero, E.; Echegoyen, L. J. Am.
Chem. Soc. 1992, 114, 3978-3980. (c) Ohsawa, Y.; Saji, T. J. Chem. Soc.,
Chem. Commun. 1992, 781-782. (d) Prato, M.; Suzuki, T.; Wudl, F.;
Lucchini, V.; Maggini, M. J. Am. Chem. Soc. 1993, 115, 7876-7877. (e)
Maggini, M.; Karlsson, A.; Scoeeano, G.; Sandona´, G.; Farnia, G.; Prato,
M. J. Chem. Soc., Chem. Comm. 1994, 589.
The photocurrent ranges of C60/AA and its derivatives without
bias voltage and electron donor are overlapped to quite an extent.
This may due to the complex influence of the produced oxygen,
the released rate of oxygen from the electrolyte solution, and
the different adsorption abilities for oxygen on the surfaces of
the Fuller-SnO2 electrodes. Results show that positive bias
voltage and electron donor as well as light intensity enhance
generating stable photocurrents. Therefore, in order to test the
capacities of generating photocurrents of each compound, the
determining conditions were chosen as follows: a 1.0 mol‚L-1
KCl electrolyte solution containing 15 mmol‚L-1 ascorbic acid
and saturated N2 under 0.1 V bias voltage. Table 3 shows the
values of photocurrent and the quantum yields of C60/AA and
its derivatives with these conditions. The quantum yields were
calculated according to the following formula:
(6) Wang Y. Nature 1992, 356, 585-587.
(7) Hwang K. C.; Mauzerall, D. J. Am. Chem. Soc. 1992, 114, 9705-
9706. (b) Hwang, K. C.; Mauzerall, D. Nature 1993, 361, 138.
(8) (a) Bensasson, R. V.; Garaud, J.-L.; Leach, S.; Miquel, G.; Seta,
P. Chem. Phys. Lett. 1993, 210, 141-148. (b) Prassides, K. Physics and
Chemistry of the Fullerenes; Kluwer Academic Publishers: The Netherlands,
1994.
(9) (a) Obeng, Y. S.; Bard, A. J. J. Am. Chem. Soc. 1991, 113, 6279.
(b) Jehonlet, C.; Obeng, C.; Kim, Y. T.; Zhou, F.; Bard, A. J. J. Am. Chem.
Soc. 1992, 114, 4237. (c) Maliszewskyj, N. C.; Heiney, P. A.; Jones, D.
R.; Strongin, R. M.; Cichy, M. A.; Smith, A. B., III. Langmuir 1993, 9,
1439. (d) Bulhoes, L. O. S.; Obeng, Y. S.; Baed, A. J. Chem. Mater. 1993,
5, 110.
(10) (a) Milliken, J.; Dominguez, D. D.; Nelson, H. H.; Barger, W. R.
Chem. Mater. 1992, 4, 252. (b) Nakamura, T.; Tachibana, H.; Yumura,
M.; Matsumoto, M.; Azumi, R.; Tanaka, M.; Kawabata, Y. Langmuir 1992,
8, 4. (c) Xiao, Y. F.; Yao, Z. Q.; Jin, D. S.; Yan, F. Y.; Xue, Q. J. J. Phys.
Chem. 1993, 97, 7072. (d) Williams, G.; Soi, A.; Bryce, M. R.; Petty, M.
C. Thin Solid Films 1993, 230, 73.
(11) (a) Gan, L. B.; Zhou, D. J.; Luo, C. P.; Huang, C. H.; et al. J.
Phys. Chem. 1994, 98, 12459-12461. (b) Zhou, D. J.; Gan, L. B.; Luo, C.
P.; Tan, H. S.; Huang, C. H.; et al. Chem. Phys. Lett. 1995, 235, 548-551.
(c) Zhou, D. J.; Gan, L. B.; Luo, C. P.; Tan, H. S.; Huang, C. H.; Yao, G.
Q.; Zhao, X. S.; Liu, Z. F.; Xia, X. H.; Zhang, P. J. Phys. Chem. 1996,
100, 3150-3156.
quantum yield )
electron number of photocurrent
photon number absorbed by the Fuller-SnO2 electrode
Results in Table 3 indicate that the photocurrent and the
quantum yield obtained from C60-SnO2 electrode are higher
than what were reported by Hwang et al.7 This difference results
from the beneficial factors used here. What need to be
emphasized is the electron attracting-repulsing effect of dif-
ferent substituent groups. The introduction of the ring of
pyrrolidine can increase the values of photocurrent as compared
with that of C60 because the methyl on the nitrogen can act as
an electron donor and cause more efficient electric charge
separation than the parent fullerene. Values also show that the
phenyl-substituted pyrrolidines promote photocurrent more
effectively. Particularly for the compound 4, the photocurrent
is more than twice that of other systems. This strongly supports
that an efficient electron-donating group can efficiently enhance
photoelectronic response. But, the electron-attracting group,
-NO2 in compound 3, does not show the effect expected on
generating photocurrent as compared with compound 2.
(12) Kra¨tschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R.
Nature 1990, 347, 354-358.
(13) Wu, Y.; Sun, Y.; Gu, Z.; Wang, Q.; Zhou, X.; Xiong, Y.; Jin, Z.
J. Chromatogr. 1993, 648, 491.
(14) (a) Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc. 1993,
115, 9798. (b) Zhou, D. J.; Gan, L. B.; Tan, H. S.; Luo, C. P.; Huang, C.
H.; Lu, M. J.; Pan, J. Q.; Wu, Y. Chinese Chemical Lett. 1995, 6, 1033-
1036.
(15) (a) Arbogast, J. W.; Darmanyan, A. P.; Foote, C. S.; Rubin, Y.;
Diederich, F. N.; Alvarez, M. M.; Anz, S. J.; Whetten, R. L. J. Phys. Chem.
1991, 95, 11-12. (b) Wang, Y. J. Phys. Chem. 1992, 96, 764. (c) Williams,
R. M.; Verhoeven, J. W. Chem. Phys. Lett. 1992, 194, 446. (d) Osaki, T.;
Tai, Y.; Tazawa, M.; Tanemura, S.; Inukal, K.; Ishiguro, K.; Sawaki, Y.;
Saito, Y.; Shinohara, H.; Nagashima, H. Chem. Phys. Lett. 1993, 204, 395.
(e) Caspar, J. V.; Wang, Y. Chem. Phys. Lett. 1994, 218, 221.
(16) (a) Arbogast, J. W.; Foote, C. S.; Kao, M. J. Am. Chem. Soc. 1992,
114, 2277-2279. (b) Verhoeven, J. W.; Scherer, T.; Heymann, D. Recl.
TraV Chim. Pays-Bas 1991, 110, 349-350.
Conclusion
We have successfully transferred the monolayer films of C60
and its pyrrolidines derivatives onto SnO2 electrodes by the LB
technique; their photoelectrochemistry behavior were observed.
The photocurrents indicate that electrons flow from the elec-
trolyte through the LB film to SnO2; therefore, a chemical
energy conversion occurs together with the photoelectronic
response. The derivatives can give higher photocurrents than
C60 itself, especially when efficient electron-donating groups
exist. More investigation is in progress on the electron-transfer
process and photocurrent generation of other Fuller-systems.
(17) (a) Williams, R. M.; Zwier, J. M.; Verhoeven, J. W. J. Am. Chem.
Soc. 1995, 117, 4093-4099. (b) Zhou, D. J.; Gan, L. B.; Tan, H. S.; Luo,
C. P.; Huang, C. H.; Yao, G. Q.; Zhang, P. J. Photochem. Photobiol. A, in
press.
JP961428G