10.1002/ejic.202100384
European Journal of Inorganic Chemistry
FULL PAPER
h. The purple-red solution was passed through a short pad of celite and
precipitated in diethyl ether. The precipitates were collected by filtration
and washed with diethyl ether (100 ml) and DCM (100 ml). The
remaining solids on the filter were collected by washing the filter
acetonitrile (100 ml). The solvent was removed under reduced pressure
to afford Zn-G@Fe8(Zn-L∙2)6 as a dark purple solid. (0.059 g, 69 %). 1H-
NMR (400 MHz, Acetonitrile-d3) δ (ppm) 9.12 – 8.86 (m, 48H), 8.63 (s,
34H), 8.48 (s, 28H), 8.41 – 8.22 (m, 50H), 8.21 – 7.66 (m, 134H), 7.51 (d,
J = 19.9 Hz, 32H), 6.59 (s, 8H), 5.67 (dd, J = 17.9, 8.1 Hz, 34H), 5.6 (s,
8H) 2.49 (s, 8H).
Kirchhoff, T. C. Williamson, Appl. Catal. A Gen. 2001, 221, 3-13; d) B.
Plietker, Synlett 2010, 14, 2049-2058; e) C. Adams, in Top. Catal.,
2009, 52, 924-934 ; f) E. S. Beach, Z. Cui, P. T. Anastas, Energy
Environ. Sci. 2009, 2, 1038-1049; g) M. Beller, G. Centi, L. Sun,
ChemSusChem 2017, 10, 6-13; h) S. Chu, A. Majumdar, Nature 2012,
488, 294-303; i) G. Centi, J. Čejka, ChemSusChem 2019, 12, 621-632.
a) B. Cornils, W. A. Herrmann, M. Beller, R. Paciello, Applied
[2]
Homogeneous Catalysis with Organometallic Compounds:
A
Comprehensive Handbook in Three Volumes, Vol. 2, Wiley‐VCH Verlag
GmbH & Co. KGaA, 2012, pp 23-90; b) D. J. Gorin, B. D. Sherry, F. D.
Toste, Chem. Rev. 2008, 108, 3351–3378; c) E. Peris, Chem. Rev.
2018, 118, 9988-10031; d) J. El Karroumi, A. El Haib, E. Manoury, A.
Benharref, J. C. Daran, M. Gouygou, M. Urrutigoïty, J. Mol. Catal. A
Chem. 2015, 401, 18-26; e) O. R. Luca, R. H. Crabtree, Chem. Soc.
Rev. 2013, 42, 1440-1459.
Zn-G@Fe8(Zn-L∙3)6: To an oven-dried Schleck flask under nitrogen
atmosphere were added Zn-G (8.45 mg, 0.012 mmol), Zn-L (0.078 g,
0.075 mmol), 3 (0.090 g, 0.3 mmol), iron(II)triflimide (0.062 g, 0.1 mmol)
and dry DMF (7 ml). The mixture was degassed by three cycles of
freeze-pump-thaw, and heated at 70 ˚C for 18 h. The reaction mixture
was cooled down to room temperature and stirred for 1 h. The purple-red
solution was passed through a short pad of celite and precipitated in
diethyl ether. The precipitates were collected by filtration and washed
with diethyl ether (100 ml) and DCM (100 ml). The remaining solids on
the filter were collected by washing with acetonitrile (150 ml). The solvent
was removed under reduced pressure to afford Zn-G@Fe8(Zn-L∙3)6 as a
dark purple solid. (0.169 g, 73 %). 1H-NMR (400 MHz, 298 K,
Acetonitrile-d3) δ (ppm) = 8.99 (d, J = 15.6 Hz, 58H), 8.61 (dd, J = 17.2,
9.0 Hz, 48H), 8.35 (dd, J = 21.5, 7.1 Hz, 62H), 8.24 – 7.76 (m, 114H),
7.22 (d, J = 17.2 Hz, 30H), 6.58 (s, 8H), 5.73 (s, 46H), 5.62 (s, 8H), 4.37
(s, 42H), 3.88 (s, 58H), 3.75 – 3.42 (m, 286H), 2.50 (s, 8H).
[3]
[4]
a) T. Keijer, T. Bouwens, J. Hessels, J. N. H. Reek, Chem. Sci. 2021, 12,
50-70; b) S. H. A. M. Leenders, R. Gramage-Doria, B. De Bruin, J. N. H.
Reek, Chem. Soc. Rev. 2015, 44, 433-448; c) K. Wang, J. H. Jordan, X.
Y. Hu, L. Wang, Angew. Chemie - Int. Ed. 2020, 59, 13712-13721.
a) M. Morimoto, S. M. Bierschenk, K. T. Xia, R. G. Bergman, K. N.
Raymond, F. D. Toste, Nat. Catal. 2020, 3, 969-984; b) V. Mouarrawis,
R. Plessius, J. I. van der Vlugt, J. N. H. Reek, Front. Chem. 2018, 6,
623; c) Q. Fu, X. Bao, Nat. Catal. 2019, 2, 834-836; d) A. B. Grommet,
M. Feller, R. Klajn, Nat. Nanotechnol. 2020, 15, 256-271; e) B.
Mitschke, M. Turberg, B. List, Chem 2020, 6, 2515-2532; f) L. Catti, Q.
Zhang, K. Tiefenbacher, Chem. Eur. J. 2016, 22, 9060-9066; g) I.
Sinha, P. S. Mukherjee, Inorg. Chem. 2018, 57, 4205-4221; h) Y. Fang,
J. A. Powell, E. Li, Q. Wang, Z. Perry, A. Kirchon, X. Yang, Z. Xiao, C.
Zhu, L. Zhang, F. Huang, H. C. Zhou, Chem. Soc. Rev. 2019, 48,
4707-4730.
Co-G@Fe8(Zn-L∙2)6: To an oven-dried Schleck flask under nitrogen
atmosphere were added Fe8(Zn-L∙2)6 (0.080 g, 0.006 mmol), Co-G (4
mg, 0.006 mmol) and dry DMF (4 ml). The mixture was degassed by
three cycles of freeze-pump-thaw, and heated at 70 ˚C for 18 h. The
reaction mixture was cooled down to room temperature and stirred for 1
h. The purple-red solution was passed through a short pad of celite and
precipitated in diethyl ether. The precipitates were collected by filtration
and washed with diethyl ether (100 ml) and DCM (100 ml). The
remaining solids on the filter were collected by washing the filter
acetonitrile (100 ml). The solvent was removed under reduced pressure
to afford Co-G@Fe8(Zn-L∙2)6 as a dark purple solid. (0.062 g, 74 %).
[5]
[6]
a) C. Tan, D. Chu, X. Tang, Y. Liu, W. Xuan, Y. Cui, Chem. - A Eur. J.
2019, 25, 662-672; b) R. J. Severinsen, G. J. Rowlands, P. G. Plieger,
J. Incl. Phenom. Macrocycl. Chem. 2020, 96, 29-42.
a) Y. Xue, X. Hang, J. Ding, B. Li, R. Zhu, H. Pang, Q. Xu, Coord. Chem.
Rev. 2021, 430, 213656. b) M. D. Ward, C. A. Hunter, N. H. Williams,
Acc. Chem. Res. 2018, 51, 2073-2082. c) L. Catti, Q. Zhang, K.
Tiefenbacher, Chem. - A Eur. J. 2016, 22, 9060-9066. d) C. J. Brown,
F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev. 2015, 115,
3012-3035. e) J. Jiao, C. Tan, Z. Li, Y. Liu, X. Han, Y. Cui, J. Am.
Chem. Soc. 2018, 140, 2251-2259. f) W.-X. Gao, H.-N. Zhang, G.-X.
Jin, Coord. Chem. Rev. 2019, 386, 69-84.
Co-G@Fe8(Zn-L∙3)6: To an oven-dried Schleck flask under nitrogen
atmosphere were added Co-G (8.8 mg, 0.013 mmol), Zn-L (0.081 g,
0.078 mmol), 3 (0.093 g, 0.31 mmol), iron(II)triflimide (0.064 g, 0.1 mmol)
and dry DMF (7 ml). The mixture was degassed by three cycles of
freeze-pump-thaw, and heated at 70 ˚C for 18 h. The reaction mixture
was cooled down to room temperature and stirred for 1 h. The purple-red
solution was passed through a short pad of celite and precipitated in
diethyl ether. The precipitates were collected by filtration and washed
with diethyl ether (100 ml) and DCM (100 ml). The remaining solids on
the filter were collected by washing with acetonitrile (150 ml). The solvent
was removed under reduced pressure to afford Co-G@Fe8(Zn-L∙3)6 as a
dark purple solid. (0.191 g, 79 %).
[7]
a) L. Li, L. Yang, X. Li, J. Wang, X. Liu, C. He, Inorg. Chem. 2021, DOI
10.1021/acs.inorgchem.1c00745. b) Q. Q. Wang, S. Gonell, S. H. A. M.
Leenders, M. Dürr, I. Ivanovic-Burmazovic, J. N. H. Reek, Nat. Chem.
2016, 137, 2680-2687.
[8] a) S. S. Nurttila, W. Brenner, J. Mosquera, K. M. van Vliet, J. R. Nitschke,
J. N. H. Reek, Chem. - A Eur. J. 2019, 25, 609-620. b) M. Otte, P. F.
Kuijpers, O. Troeppner, I. Ivanović-Burmazović, J. N. H. Reek, B. de
Bruin, Chemistry 2014, 20, 4880-4884.
[9]
a) C. J. Hastings, M. D. Pluth, R. G. Bergman, K. N. Raymond, J. Am.
Chem. Soc. 2010, 132, 6938-40. b) W. M. Hart-Cooper, K. N. Clary, F.
D. Toste, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2012,
134, 17873-7876.
[10]
[11]
a) M. J. Wiester, P. A. Ulmann, C. A. Mirkin, Angew. Chemie - Int. Ed.
2011, 50, 114-137; b) E. Kuah, S. Toh, J. Yee, Q. Ma, Z. Gao, Chem. -
A Eur. J. 2016, 22, 8404-8430; c) J. Meeuwissen, J. N. H. Reek, Nat.
Chem. 2010, 2, 615-621.
Acknowledgements
L. J. Kingsley, M. A. Lill, Proteins Struct. Funct. Bioinforma. 2015, 83,
599-611.
A Financial support from The Netherlands Organization for
Scientific Research (NWO TOP-PUNT) and the University of
Amsterdam (Research Priority Area Sustainable Chemistry) is
gratefully acknowledged.
[12] X. Yu, V. Cojocaru, R. C. Wade, Biotechnol. Appl. Biochem. 2013, 60,
134-145.
[13] S. Kaushik, S. M. Marques, P. Khirsariya, K. Paruch, L. Libichova, J.
Brezovsky, Z. Prokop, R. Chaloupkova, J. Damborsky, FEBS J. 2018,
285, 1456-1476.
Keywords: Confinement • cyclopropanation • homogeneous
catalysis • Metal-coordination cages • cage effects
[14] M. Raynal, P. Ballester, A. Vidal-Ferran, P. W. N. M. van Leeuwen,
Chem. Soc. Rev. 2014, 43, 1734–87.
[15] V. Mouarrawis, E. Bobylev, B. de Bruin, J. Reek, Chem. Eur. J. 2021, 27,
8390-8397.
[1]
a) G. Centi, S. Perathoner, Catal. Today 2008, 138, 69-76; b) Y. Kim,
C.-J. Li, Green Synth. Catal. 2020, 1, 1-11; c) P. T. Anastas, M. M.
9
This article is protected by copyright. All rights reserved.