R.D. Adams et al. / Journal of Organometallic Chemistry 706-707 (2012) 20e25
25
dissociation of PPh3 from the gold atoms is ruled out. Therefore,
References
a dynamical exchange process that leads to an interchange of the
two types Au(PPh3) groups on the NMR timescale at room
temperature seems to be the most likely. A variety of mechanisms
can be envisioned, but all must involve the cleavage of at least one
of the AueAu bonds. One mechanism that we find attractive is
shown in Scheme 3. Assuming the Au2eAu3 bond is cleaved as in
structure C on the left and the two bonded Au atoms Au1 and Au2,
then pivot around the Ir atom to the position shown in intermediate
D, the exchange can then be accomplished by shifting atom Au3 to
the neighboring IrRu2 triangle with the formation of an AueAu
bond between Au1 and Au3 in the equivalent structure C0. In the
process Au1 becomes the central Au atom of the Au3 group and Au2
becomes one of the outer Au atoms. Alternatively, a cleavage of the
Au1eAu2 bond in C followed by formation of a similar D type
intermediate (a mirror image of the one shown in Scheme 3) would
ultimately lead to the placement of atom Au3 into the center of the
Au3 grouping.
[1] (a) R.H. Crabtree, Top. Organomet. Chem. 34 (2011) 1e10;
(b) J.H. Jones, Platinum Metals Rev. 44 (2000) 94e105.
[2] (a) C.M. Jensen, Chem. Commun. (1999) 2443e2449;
(b) V. César, S. Bellemin-Laponnaz, L.H. Gade, Chem. Soc. Rev. 33 (2004)
619e636;
(c) S.-M. Lu, X.-W. Han, Y.-G. Zhou, Adv. Synth. Catal. 346 (2004) 909e912;
(d) W. Matthias, M.W. Haenel, S. Oevers, K. Angermund, W.C. Kaska, H.-J. Fan,
M.B. Hall, Angew. Chem. Int. Ed. 40 (2001) 3596e3600.
[3] (a) J. Lu, P. Pedro Serna, C. Aydin, N.D. Browning, B.C. Gates, J. Am. Chem. Soc.
133 (2011) 16186e16195;
(b) B.C. Gates, Chem. Rev. 95 (1995) 511e522;
(c) E. Bayram, M. Zahmakiran, S. Ozkar, R.G. Finke, Langmuir 26 (2011)
12455e12464;
(d) A. Uzun, D.A. Dison, B.C. Gates, ChemCatChem. 3 (2011) 95e107;
(e) B.C. Gates, in: R.D. Adams, F.A. Cotton (Eds.), Catalysis by Di- and Poly-
nuclear Metal Complexes, Wiley-VCH Publishers, New York, 1998 Ch. 14.
[4] R. Psaro, C. Dossi, R. Della Pergola, L. Garlaschelli, S. Calmotti, S. Marngo,
M. Bellatreccia, R. Zanoni, Appl. Catal. A: Gen. 121 (1995) L19eL23.
[5] G. Süss-Fink, S. Haak, V. Ferrand, H. Stoeckli-Evans, J. Molec. Catal. 143 (1999)
163e170.
[6] H. Hamada, Y. Kuwahara, Y. Kintaichi, T. Ito, K. Wakabayashi, H. IIjima, K.-
I. Sano, Chem. Lett. (1984) 1611e1612.
[7] R.E. Fuentes, J. Farell, J.W. Weidner, Electrochem. Solid-State Lett. 14 (2011)
E5eE7.
Somewhat similar rocking shifts of Au2(PPh3)2 groups have been
proposed to explain the averaging of two of the phosphorus reso-
nances in the compound Ru6(CO)16(AuPPh3)3(m6-B) [25]. It has
recently been shown that Pd(P-t-Bu3) groups can migrate from face
to face in some polynuclear ruthenium carbonyl cluster complexes
[26].
[8] (a) M. Haruta, Catal. Today 36 (1997) 153e166;
(b) M. Haruta, M. Date, Appl. Catal. A: Gen. 222 (2001) 427e437;
(c) A.S.K. Hashmi, G.J. Hutchings, Angew. Chem. Int. Ed. 45 (2006) 7896e7936.
[9] (a) G.J. Hutchings, Angew. Chem. Int. Ed. (2008) 1148e1164;
(b) L.B. Ortiz-Soto, O.S. Alexeev, M.D. Amiridis, Langmuir 22 (2006)
3112e3117.
[10] (a) T. Chihara, M. Sato, H. Konomoto, S. Kamiguchi, H. Ogawa, Y. Wakatsuki,
J. Chem. Soc. Dalton Trans. (2000) 2295e2299;
4. Conclusions
(b) J.R. Galsworthy, A.D. Hattersley, C.E. Housecroft, A.L. Rheingold, A. Waller,
J. Chem. Soc. Dalton Trans. (1995) 549e557.
The family of mixed transition metalegold polynuclear metal
complexes has been expanded to include the series HmIr-
Ru3Au(PPh3)n, m ¼ 0/1, n ¼ 1e3. When two or more Au(PPh3)
groups are present in the complex, the Au(PPh3) groups are
mutually bonded to each other and undergo dynamical averaging
on the NMR timescale at ambient temperatures. These complexes
may serve as precursors to new gold-containing multi-metallic
catalysts in the future [27].
[11] R.D. Adams, Q. Zhang, Z. Yang, J. Am. Chem. Soc. 133 (2011) 15950e15953.
[12] G. Süss-Fink, S. Haak, V. Ferrand, H. Stoeckli-Evans, J. Chem. Soc. Dalton Trans.
(1997) 3861e3865.
[13] L. Malatesta, L. Naldini, G. Simonetta, F. Cariati, Coord. Chem. Rev. 1 (1966)
255e262.
[14] A.N. Nesmeyanov, E.G. Perevalova, Y.T. Struchkov, M.Y. Antipin,
K.I. Grandberg, V.P. Dyadchenko, J. Organomet. Chem. 201 (1980) 343e349.
[15] (a) Kirk Marat, SpinWorks 3.1.7 Copyright Ó, University of Manitoba, 2010;
(b) A.R. Quirt, J.S. Martin, J. Magn. Reson. 5 (1971) 318e327.
[16] SAINTþ, Version 6.2a, Bruker Analytical X-ray Systems, Inc., Madison, WI,
2001.
[17] G.M. Sheldrick, SHELXTL, Version 6.1, Bruker Analytical X-ray Systems, Inc.,
Madison, WI, 1997.
Acknowledgments
[18] M.I. Bruce, B.K. Nicholson, Organometallics 3 (1984) 101e108.
[19] (a) R. Bau, M.H. Drabnis, Inorg. Chim. Acta 259 (1997) 27e50;
(b) R.G. Teller, R. Bau, Struct. Bonding 44 (1981) 1e82.
[20] (a) M.J. Freeman, A.G. Orpen, I.D. Salter, J. Chem. Soc. Dalton Trans. (1987)
379e390;
This research was supported by the National Science Foundation
CHE-1111496.
b) A.G. Orpen, I.D. Salter, Organometallics 10 (1991) 111e117.
[21] P. Bellon, M. Manassero, M. Sansoni, J. Chem. Soc. Dalton Trans. (1973)
2423e2427.
Appendix A. Supplementary material
[22] J.A.K. Howard, I.D. Salter, F.G.A. Stone, Polyhedron 3 (1984) 567e573.
[23] M.I. Bruce, B.K. Nicholson, J. Organomet. Chem. 252 (1983) 243e255.
[24] (a) I.D. Salter, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive
Organometallic Chemistry, Vol. 10, Elsevier, London, 1995 Ch. 5;
(b) I.D. Salter, in: P. Braunstein, L.A. Oro, P.R. Raithby (Eds.), Metal Clusters in
Chemistry, Vol. 1, Wiley-VCH, Weinheim, 1999, pp. 509e534 Ch. 1.27.
[25] C.E. Housecroft, D.M. Matthews, A. Waller, A.J. Edwards, A.L. Rheingold,
J. Chem. Soc. Dalton Trans. (1993) 3059e3070.
853373(2), 853374(3), 853375(1) contain the supplementary
crystallographic data for this paper. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre via
Appendix. Supplementary material
[26] R.D. Adams, B. Captain, W. Fu, P.J. Pellechia, M.D. Smith, Inorg. Chem. 42
(2003) 2094e2101.
[27] J. Evans, J. Gao, J. Chem. Soc. Chem. Commun. (1985) 39e40;
(b) Y. Li, W.-X. Pan, W.-T. Wong, J. Cluster Sci. 13 (2002) 223e233.
Supplementary data related to this article can be found online at