C O M M U N I C A T I O N S
Table 1. Variations in the Experimental Conditions and Reactant
Stoichiometry for the Synthesis of [2]Rotaxane 4
as well as a cycloaddition catalyst. When using 20 mol % (with
respect to 1) of Cu(CH CN) PF at room temperature, the reaction
3 4 6
a
equiv equiv
of of
entry 2 and 3 CuPF
conversion
yield of
appeared to stop after rotaxane equivalent to the amount of copper
present had been formed (entry 5). This suggests that the multi-
dentate rotaxane sequesters the transition metal during the reaction,
inhibiting further catalytic activity. Addition of pyridine as a
competing ligand enabled the catalyst to turn over producing a
substoichiometric reaction (entries 6 and 7), but the reaction was
extremely slow at 25 °C. Elevating the temperature (entry 9) gives
an improved yield (82%) of rotaxane 4 in a reasonable period of
time (36 h) using only 4 mol % Cu(I) with respect to both 2 and
to triazole [2]rotaxane
6
solvent
T (°
C)
duration
2
+3f4+5
1f4
1
2
3
4
5
6
7
8
1
1
3
5
1
1
5
1
1
1
1
1
CH
O/tBuOH
CH Cl
CH Cl
2
Cl
2
25
25
25
25
25
25
25
12 h
10 days
24 h
>95%
>95%
>95%
92%
30%
>95%
44%
57%
22%
83%
94%
20%
38%
59%
0%
H
2
2
2
c
2
2
72 h
0.2 CH
0.2 CH
0.2 CH
2
2
2
Cl
Cl
Cl
2
10 days
10 days
20 days
b
b
2
2
0
ClCH
2
CH
2
Clb 25 then 70 12 h then trace
3.
7
2 h
Clb 25 then 70 12 h then 94%
The requirement for only a catalytic amount of a template
9
5
0.2 ClCH
2
CH
2
82%
2
4 h
represents a new development in the strategies available to
mechanically interlocked architectures. Chelation to catalytic centers
could lead to rotaxane- and catenane-forming protocols based on
other metal-mediated reactions, including cross-couplings, conden-
sations, and other cycloaddition reactions.
a
All reactions were carried out at 0.1 mM concentration with respect to
and 3, with 1 equiv of macrocycle 1, and without the need for an inert
2
atmosphere nor distilled or dried solvents. A general experimental procedure
is provided in the Supporting Information. b With 3 equiv of pyridine. c To
assess the efficacy of the rotaxane and thread as ligands for a catalytic
copper species, the reaction conditions from entry 4 were repeated with no
macrocycle present but starting with 1 equiv of 4 or 5 instead. The resulting
conversions of 2 + 3 f 5 were 2 and 9%, respectively.
Supporting Information Available: General synthetic experimental
procedure and characterization and spectroscopic data for 4, 5, and their
precursors. This material is available free of charge via the Internet at
http://pubs.acs.org.
References
(
(
(
1) (a) Dietrich-Buchecker, C. O.; Sauvage, J.-P.; Kintzinger, J. P. Tetrahedron
Lett. 1983, 24, 5095-5098. (b) Sauvage, J.-P. Acc. Chem. Res. 1990, 23,
319-327.
2) (a) Amabilino, D. B.; Stoddart, J. F. Chem. ReV. 1995, 95, 2725-2828.
(
b) Sauvage, J.-P.; Dietrich-Buchecker, C. O. Molecular Catenanes,
Rotaxanes, and Knots; Wiley-VCH: Weinheim, Germany, 1999.
3) (a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67,
3
K. B. Angew. Chem., Int. Ed. 2002, 41, 2596-2599.
4) Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.;
Wiley: New York, 1984.
057-3062. (b) Rostovstev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless,
(
(
5) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2
001, 40, 2004-2021. (b) Wang, Q.; Chittaboina, S.; Barnhill, H. N. Lett.
Org. Chem. 2005, 2, 293-301.
(
6) (a) Lee, L. V.; Mitchell, M. L.; Huang, S.-J.; Fokin, V. V.; Sharpless, K.
B.; Wong, C.-H. J. Am. Chem. Soc. 2003, 125, 9588-9589. (b) Seo, T.
S.; Li, Z.; Ruparel, H.; Ju, J. J. Org. Chem. 2003, 68, 609-612. (c) L o¨ ber,
S.; Rodriguez, P.-L.; Gmeiner, P. Org. Lett. 2003, 5, 1753-1755. (d)
Perez, F.-B.; Ortega, M.-M.; Morales, J.-S.; Hern a´ ndez, F.-M.; Calvo, F.
G.-F.; Calvo, J. A.-A.; Isac, J.-G.; Santoyo, F.-G. Org. Lett. 2003, 5, 1951-
1
954. (e) Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman,
L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210-
2
16. (f) Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org.
Chem. 2006, 51-68.
(
7) The 1,3-cycloaddition of azides to terminal alkynes has previously been
employed to prepare rotaxanes and polyrotaxanes by using cucurbituril
to accelerate the reaction by organizing the reactants and increasing their
effective molarity: (a) Mock, W. L.; Irra, T. A.; Wepsiec, J. P.; Adhya,
M. J. Org. Chem. 1989, 54, 5302-5308. (b) Tuncel, D.; Steinke, J. H. G.
Chem. Commun. 1999, 1509-1510. (c) Tuncel, D.; Steinke, J. H. G. Chem.
Commun. 2002, 496-497. (d) Tuncel, D.; Steinke, J. H. G. Macromol-
ecules 2004, 37, 288-302. The uncatalyzed 1,3-cycloaddition between
azides and electron-poor internal alkynes has been used to form rotaxanes
by a “threading-followed-by-stoppering” protocol: (e) Ashton, P. R.;
Glink, P. T.; Stoddart, J. F.; Tasker, P. A.; White, A. J. P.; Williams, D.
J. Chem.sEur. J. 1996, 2, 729-736.
Figure 1. 1H NMR spectra (400 MHz, CDCl3, 298 K) of (a) macrocycle
1
, (b) [2]rotaxane 4, (c) thread 5, (d) [2]rotaxane-CuPF6 complex [4Cu]PF6,
e) macrocycle-CuPF6 complex [1CuL2]PF6. The assignments correspond
to the lettering shown in Scheme 1.
(
(8) Lewis, W. G.; Magallon, F. G.; Fokin, V. V.; Finn, M. G. J. Am. Chem.
Soc. 2004, 126, 9152-9153.
(
6
e,f
9) Kinetic studies
indicate that the ligand-free aqueous alkyne-azide
(5) instead gave low conversions to the triazole (2 and 9%,
cycloaddition involves two, probably bridged, metal centers. In contrast,
little is known about the details of the ligand-promoted reaction in organic
respectively; see Table 1 footnote b), showing that both rotaxane
and thread are poor ligands for generating a catalytic copper species.
Clearly, the noninterlocked thread produced in the rotaxane-forming
reactions arises from the macrocycle-promoted Cu catalysis being
able to take place around, rather than solely through, the cavity of
6
solvents. It is not yet clear whether the formation of [4Cu]PF proceeds
via single copper atom intermediates, binuclear species, or structurally
more complex aggregates. Further studies are ongoing.
(
10) (a) Fuller, A.-M.; Leigh, D. A.; Lusby, P. J.; Oswald, I. D. H.; Parsons,
S.; Walker, D. B. Angew. Chem., Int. Ed. 2004, 43, 3914-3918. (b) Leigh,
D. A.; Lusby, P. J.; Slawin, A. M. Z.; Walker, D. B. Angew. Chem., Int.
Ed. 2005, 44, 4557-4564. (c) Fuller, A.-M. L.; Leigh, D. A.; Lusby, P.
J.; Slawin, A. M. Z.; Walker, D. B. J. Am. Chem. Soc. 2005, 127, 12612-
12619. (d) Leigh, D. A.; Lusby, P. J.; Slawin, A. M. Z.; Walker, D. B.
Chem. Commun. 2005, 4919-4921.
1. We are currently exploring the noninterlocked:interlocked
selectivity of other ligand designs.
We next investigated the use of substoichiometric amounts of
copper to determine whether the metal would turn over as a template
JA056903F
J. AM. CHEM. SOC.
9
VOL. 128, NO. 7, 2006 2187