Journal of the American Chemical Society
Page 4 of 5
cantly stabilized by delocalization into the otherwise vacant 2p
AO of B(1) oriented perpendicular to the N(1)B(1)C(1)C(2)
plane.
REFERENCES
1
2
1. Walsh, P. J.; Carney, M. J.; Bergman, R. G. J. Am. Chem. Soc. 1991,
113, 6343.
3
4
5
6
7
8
9
The conversion of a terminal hydrazide to a borylimide is a previꢀ
ously unknown reaction. Mechanistically, based on the other
observations reported above, we propose that this proceeds first of
all via 1,2ꢀB–H addition to Ti=Nα to form an intermediate analoꢀ
gous to 9. Hydride transfer to the Nα atom and reductive Nα–Nβ
2. (a) Li, Y.; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2004, 126, 1794;
(b) Banerjee, S.; Odom, A. L. Organometallics 2006, 25, 3099; (c)
Dissanayake, A. A.; Odom, A. L. Chem. Commun. 2012, 48, 440;
(d) Herrmann, H.; Fillol, J. L.; Wadepohl, H.; Gade, L. H. Angew.
Chem. Int. Ed. 2007, 46, 8426; (e) Gehrmann, T.; Fillol, J. L.;
Wadepohl, H.; Gade, L. H. Angew. Chem. Int. Ed. 2009, 48, 2152;
(f) Gehrmann, T.; Kruck, M.; Wadepohl, H.; Gade, L. H. Chem.
Commun. 2012, 48, 2397; (g) Gehrmann, T.; Scholl, S. A.; Fillol, J.
L.; Wadepohl, H.; Gade, L. H. Chem. Eur. J. 2012, 18, 3925; (h)
Blake, A. J.; McInnes, J. M.; Mountford, P.; Nikonov, G. I.; Swalꢀ
low, D.; Watkin, D. J. J. Chem. Soc., Dalton Trans. 1999, 379; (i)
Selby, J. D.; Manley, C. D.; Feliz, M.; Schwarz, A. D.; Clot, E.;
Mountford, P. Chem. Commun. 2007, 4937; (j) Schofield, A. D.;
Nova, A.; Selby, J. D.; Manley, C. D.; Schwarz, A. D.; Clot, E.;
Mountford, P. J. Am. Chem. Soc. 2010, 132, 10484; (k) Tiong, P. J.;
Schofield, A. D.; Selby, J. D.; Nova, A.; Clot, E.; Mountford, P.
Chem. Commun. 2010, 46, 85; (l) Schofield, A. D.; Nova, A.; Selby,
J. D.; Schwarz, A. D.; Clot, E.; Mountford, P. Chem. Eur. J. 2011,
17, 265; (m) Tiong, P. J.; Nova, A.; Clot, E.; Mountford, P. Chem.
Commun. 2011, 47, 3147; (n) Schwarz, A. D.; Onn, C. S.; Mountꢀ
ford, P. Angew. Chem. Int. Ed. 2012, 51, 12298.
3. (a) Duncan, A. P.; Bergman, R. G. The Chemical Record 2002, 2,
431; (b) Hazari, N.; Mountford, P. Acc. Chem. Res. 2005, 38, 839;
(c) Fout, A. R.; Kilgore, U. J.; Mindiola, D. J. Chem. Eur. J. 2007,
13, 9428.
4. Schwarz, A. D.; Nova, A.; Clot, E.; Mountford, P. Chem. Commun.
2011, 47, 4926.
5. Tiong, P. J.; Nova, A.; Schwarz, A. D.; Selby, J. D.; Clot, E.;
Mountford, P. Dalton Trans. 2012, 41, 2277.
6. (a) Sweeny, Z. K.; Polse, J. L.; Bergman, R. G.; Andersen, R. A.
Organometallics 1999, 18, 5502; (b) Hanna, T. E.; Lobkovsky, E.;
Chirik, P. J. Inorg. Chem. 2007, 46, 2359.
bond
cleavage
would
then
form
Cp*Ti{MeC(NiPr)2}{N(H)BC8H14}(NR2) (10_Int), analogous to
5. Subsequent 1,2ꢀelimination of R2NH from 10_Int would form
10 and Ph2NH (Ph2NH does not react with 10, consistent with this
hypothesis). An independent control experiment confirmed that
Ph2NH and 9ꢀBBN react quantitatively at 60 oC in the presence of
10 to form H2 and 11b. ꢀ
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Compounds 8a,b are prepared from Cp*Ti{MeC(NiPr)2}(NtBu)
by protonolysis (tBuNH2 elimination) using the appropriate
hydrazine. In a similar manner, the reaction of 10 with 1 equiv.
Ph2NNH2 in C6D6 quantitatively reꢀformed 8b and the
aminoborane H2NB8H14 (12,17 Scheme 2; a corresponding
reaction was observed for Me2NNH2 but was less clean). Overall,
the reaction sequence in Scheme 2 converting 8b into 10 and then
back again may be viewed as the titaniumꢀmediated reduction of
Ph2NNH2 with 9ꢀBBN dimer to form H2, H2NC8H14 and
Ph2NBC8H14. This is a new reaction of disubstituted hydrazines
and boranes which usually undergo dehydrogenative N–B bond
coupling without N–N bond cleavage.18
7. Chu, J.; Han, X.; Kefalidis, C. E.; Zhou, J.; Maron, L.; Leng, X.;
Chen, Y. J. Am. Chem. Soc. 2014, 136, 10894.
8. (a) MacKay, B. A.; Munha, R. F.; Fryzuk, M. D. J. Am. Chem. Soc.
2006, 128, 9472; (b) Hirotsu, M.; Fontaine, P. P.; Epshteyn, A.;
Zavalij, P. Y.; Sita, L. R. J. Am. Chem. Soc. 2007, 129, 9284; (c)
Semproni, S. P.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc.
2011, 133, 10406.
9. (a) Fryzuk, M. D.; MacKay, B. A.; Johnson, S. A.; Patrick, B. O.
Angew. Chem. Int. Ed. 2002, 14, 3709; (b) MacKay, B. A.; Johnson,
S. A.; Patrick, B. O.; Fryzuk, M. D. Can. J. Chem. 2005, 83, 315; (c)
Semproni, S. P.; Chirik, P. J. Eur. J. Inorg. Chem. 2013, 3907.
10. Thompson, R.; Tran, B. A.; Ghosh, S.; Chen, C.ꢀH.; Pink, M.; Gao,
X.; Carroll, P. J.; Baik, M.ꢀH.; Mindiola, D. J. Inorg. Chem. 2015,
54, 3068.
11. Sieh, D.; Schoffel, J.; Burger, P. Dalton Trans. 2011, 40, 9512.
12. Creview, T. J.; Mayer, J. M. Angew. Chem. Int. Ed. 1998, 37, 1891.
13. Komoroski, L.; Meller, A.; Niedenzu, K. Inorg. Chem. 1990, 29,
538.
14. Barrett, A. G. M.; Crimmin, M. R.; Hill, M. S.; Hitchcock, P. B.;
Procopiou, P. A. Organometallics 2007, 26, 4076.
15. (a) Danopoulos, A. A.; Redshaw, C.; Vaniche, A.; WIlkinson, G.;
HussainꢀBates, B.; Hursthouse, M. B. Polyhedron 1993, 12, 1061;
(b) Weber, K.; Korn, K.; Schorm, A.; Kipke, J.; Lemke, M.;
Khvorost, A.; Harms, K.; Sundermeyer, J. Z. Anorg. Allg. Chem.
2003, 629, 744; (c) Thompson, R.; Chen, C.ꢀH.; Pink, M.; Wu, G.;
Mindiola, D. J. J. Am. Chem. Soc. 2014, 136, 8197.
16. Fletcher, D. A.; McMeeking, R. F.; Parkin, D. J. Chem. Inf. Comput.
Sci. 1996, 36, 746 (The UK Chemical Database Service: CSD verꢀ
sion 5.35 updated May 2015).
In summary we have reported the first examples of the Si–H or
B–H induced reductive cleavage of a hydrazide N–N bond at a
single metal center. These reactions can ultimately result in
complete Nα or Nβ atom transfer to substrate (i.e., formation of 7,
11 and 12), and encompasses the overall reduction of R2NNH2
with 9ꢀBBN to the corresponding borylamines R2NB8H14 (R' = Ph
or H) and H2, a new type of dehydrogenative coupling reaction.
Further work is ongoing to determine the mechanistic details,
scope and further potential of this and other borylimideꢀmediated
dehydrogenative coupling reactions which are beyond the scope
of this preliminary communication.
ASSOCIATED CONTENT
Supporting Information
Synthetic procedures, characterizing data, crystallographic data in
CIF format, further computational details, and geometries of all
the optimized structures as a single .xyz file. This material is
AUTHOR INFORMATION
Corresponding Author:
17. Köster, R.; Seidel, G. Liebigs Ann. Chem. 1977, 1837.
18. Johnson, H. C.; Hooper, T. N.; Weller, A. S. Top. Organomet.
Chem. 2015, 49, 153.
philip.mountford@chem.ox.ac.uk. eric.clot@umontpellier.fr
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We thank the University of Oxford for support.
ACS Paragon Plus Environment