1590
I. S. Marcos et al.
LETTER
(4) (a) Bhar, S. S.; Ramana, M. M. V. J. Org. Chem. 2004, 69,
8935. (b) Hostettmann, K.; Schaller, F. US Patent, 5929124,
2000.
(5) (a) Ling, T.; Chowdhury, C.; Kramer, B. A.; Vong, B. G.;
Palladino, M. A.; Theodorakis, E. A. J. Org. Chem. 2001,
66, 8843. (b) Ling, T.; Kramer, B. A.; Palladino, M. A.;
Theodorakis, E. A. Org. Lett. 2000, 2, 2073.
(6) Tada, M.; Okuno, K.; Chiba, K.; Ohnishi, E.; Yoshii, T.
Phytochemistry 1994, 35, 539.
(7) The Total Synthesis of Natural Products, Vol. 8; ApSimon,
J., Ed.; J. Wiley and Sons: New York, 1990.
under Baeyer–Villiger conditions with urea–hydrogen
peroxide (UHP) and TFAA, led to the acetoxy derivative
6. The benzylic oxidation of 6 produced acetoxynimbiol
8, that on alkaline hydrolysis led to (+)-nimbiol 911 in an
excellent 37% global yield from sclareol. Compound 6
was hydrolyzed to give the known deoxynimbiol 712 as
well (Scheme 1).
In conclusion a new straightforward route for the synthe-
sis of diterpenes with podocarpane skeleton starting from
sclareol has been accessed. The synthesis of the natural
compound (+)-nimbiol 9 corroborates the importance of
this new route.
(8) Sengupta, P.; Choudhuri, S. N.; Khastgir, H. N. Tetrahedron
1960, 10, 45.
(9) (a) Marcos, I. S.; Basabe, P.; Laderas, M.; Díez, D.; Jorge,
A.; Rodilla, J. M.; Moro, R. F.; Lighgow, A. M.; Barata, I.
G.; Urones, J. G. Tetrahedron 2003, 59, 2333. (b) Leite, M.
A. F.; Sarragiotto, M. H.; Imamuna, P.; Marsaidi, A. J.
J. Org. Chem. 1986, 51, 5409.
Acknowledgment
The authors are grateful to Drs. A. Lithgow and Cesar Raposo from
Servicio General de R.M.N. and Servicio General de E.M., respec-
tively and to the CICYT (CTQ2005-04406) for financial support.
We would also like to thank the Junta de Castilla y León for a grant
to L. C. and Universidad de Salamanca for a grant to A. B.
(10) Aladesanmi, A. J.; Odediran, S. A. Fitoterapia 2000, 71,
179.
(11) [a]D22 +31 (c = 0.8, CHCl3); mp 245 °C {Lit.8 [a]D22 +32.3;
mp 250 °C}. IR (film): 3291, 2929, 2869, 1655, 1578, 1458,
1287, 1162, 907, 733, 665 cm–1. 1H NMR (400 MHz,
CDCl3): d = 7.82 (s, 1 H, H-14), 6.75 (s, 1 H, H-11), 5.82 (br
s, 1 H, OH), 2.67 (dd, J = 4.4, 18.0 Hz, 1 H, H-6a), 2.58 (dd,
J = 13.6, 18.0 Hz, 1 H, H-6b), 2.23 (s, 3 H, ArCH3), 1.83 (dd,
J = 4.4, 13.6 Hz, 1 H, H-5), 1.24–1.78 (m, 6 H), 1.20 (s, 3 H,
References and Notes
(1) (a) Glasby, J. S. Encyclopedia of the Terpenoids, Vol. 1; J.
Wiley and Sons: New York, 1982. (b) Glasby, J. S.
Encyclopedia of the Terpenoids, Vol. 2; J. Wiley and Sons:
New York, 1982. (c) Hanson, J. R. Nat. Prod. Rep. 2006, 23,
875; and references cited therein.
(2) (a) Kupchan, S. M.; Karim, A.; Marcks, C. J. Org. Chem.
1969, 34, 3912. (b) Gao, J.; Han, G. Phytochemistry 1997,
44, 759. (c) Son, K.-H.; Oh, H.-M.; Choi, S.-K.; Han, D. C.;
Kwon, B.-M. Bioorg. Med. Chem. Lett. 2005, 15, 2019.
(3) (a) Thongnest, S.; Mahidol, C.; Sutthivaiyakit, S.;
Ruchirawat, S. J. Nat. Prod. 2005, 68, 1632.
Me-20), 0.98 (s, 3 H, Me-19), 0.92 (s, 3 H, Me-18). 13
C
NMR (50 MHz, CDCl3): d = 38.2 (C-1), 19.1 (C-2), 41.5 (C-
3), 33.5 (C-4), 49.8 (C-5), 36.2 (C-6), 199.3 (C-7), 124.4 (C-
8), 157.3 (C-9), 38.1 (C-10), 109.8 (C-11), 159.7 (C-12),
122.4 (C-13), 131.0 (C-14), 15.4 (ArCH3), 32.8 (C-18), 21.6
(C-19), 23.5 (C-20). HRMS (ESI): m/z [M+] calcd for
C18H24O2: 272.1772; found: 272.1776.
(12) Nakano, T.; Alonso, R.; Maillo, M. A.; Martín, A.; Nuñez,
R. A. J. Chem. Soc., Perkin Trans. 1 1998, 1423.
(b) Rasoamiaranjanahary, L.; Guilet, D.; Marston, A.;
Randimbivololona, F.; Hostettmann, K. Phytochemistry
2003, 64, 543. (c) Hostettmann, K.; Terreaux, C. Chimia
2000, 54, 652.
Synlett 2007, No. 10, 1589–1590 © Thieme Stuttgart · New York