Drug Deliv. and Transl. Res.
to promote mitochondrial apoptosis for mammary gland chemopre-
vention. Oncotarget. 2017;8(41):70049–71.
11. Calder PC. The role of marine omega-3 (n-3) fatty acids in inflam-
matory processes, atherosclerosis and plaque stability. Mol Nutr
Food Res. 2012;56(7):1073–80.
12. Singh M, Kanoujia J, Singh P, Tripathi CB, Arya M, Parashar P,
et al. Development of an α-linolenic acid containing soft
nanocarrier for oral delivery: in vitro and in vivo evaluation. RSC
Adv. 2016;6(81):77590–602.
13. Tripathi CB, Beg S, Kaur R, Shukla G, Bandopadhyay S, Singh B.
Systematic development of optimized SNEDDS of artemether with
improved biopharmaceutical and antimalarial potential. Drug Deliv.
2016;23(9):3209–23.
the drug to the target which was confirmed through
biodistribution data. From the above evidences, it can be con-
cluded that the proliferative and metastatic effects of DMBA
are curtailed by f-Dox-NE through activation the
mitochondrial-mediated apoptotic pathway and downregula-
tion of anti-apoptotic and pro-migratory proteins. Apart
from being safe, ALA behaves like anti-inflammatory, an-
tioxidant and anticancer agent. In light of the above studies,
it can be concluded that a safe lipid like ALA can be a better
alternative to metallic, polymeric nanoparticles etc. for an-
ticancer therapy. Nanoformulations are already being used
commercially and such translations could prove to be ben-
eficial in the long run.
14. Jiang SP, He SN, Li YL, Feng DL, Lu XY, Du YZ, et al. Preparation
and characteristics of lipid nanoemulsion formulations loaded with
doxorubicin. Int J Nanomedicine. 2013;8:3141–50.
15. Mizushima Y. Lipid microspheres (lipid emulsions) as a drug car-
rier—an overview. Adv Drug Del Rev. 1996;20(2–3):113–5.
16. Kouchakzadeh H, Soudi T, Heshmati Aghda N, Shojaosadati SA.
Ligand-modified biopolymeric nanoparticles as efficient tools for
17. Kandadi P, Syed MA, Goparaboina S, Veerabrahma K. Albumin
coupled lipid nanoemulsions of diclofenac for targeted delivery to
inflammation. Nanomed Nanotech Biol Med. 2012;8(7):1162–71.
18. Liu Y, Yu XM, Sun RJ, Pan XL. Folate-functionalized lipid
nanoemulsion to deliver chemo-radiotherapeutics together for the
effective treatment of nasopharyngeal carcinoma. AAPS Pharm Sci
Technol. 2017;18(4):1374–81.
Acknowledgements The authors acknowledge the kind support of
Miracalus Pharma, India, for providing the gift sample of the drug.
Authors also acknowledge the USIC, BBAU Lucknow, India and
Aakar Biotechnologies Pvt. Ltd., Lucknow, India, for providing evalua-
tion and characterization facilities for the current research work.
Compliance with ethical standards
Conflict of interest The authors have no conflicts of concern with re-
spect to the authorship and/or publication of this research article.
19. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski
VR Jr, et al. Distribution of the folate receptor GP38 in normal
and malignant cell lines and tissues. Cancer Res. 1992;52(12):
3396–401.
References
20. Weitman SD, Weinberg AG, Coney LR, Zurawski VR, Jennings
DS, Kamen BA. Cellular localization of the folate receptor: poten-
tial role in drug toxicity and folate homeostasis. Cancer Res.
1992;52(23):6708–11.
21. Salazar MD, Ratnam M. The folate receptor: what does it promise
in tissue-targeted therapeutics? Cancer Metastasis Rev. 2007;26(1):
141–52.
22. Huan ML, Zhou SY, Teng ZH, Zhang BL, Liu XY, Wang JP, et al.
Conjugation with alpha-linolenic acid improves cancer cell uptake
and cytotoxicity of doxorubicin. Bioorg Med Chem Lett.
2009;19(9):2579–84.
23. Singh B, Kapil R, Nandi M, Ahuja N. Developing oral drug deliv-
ery systems using formulation by design: vital precepts, retrospect
and prospects. Expert Opin Drug Deliv. 2011;8(10):1341–60.
24. Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via
folate receptor-mediated endocytosis. J Biol Chem. 1994;269(5):
3198–204.
25. Bae PK, Jung J, Lim SJ, Kim D, Kim SK, Chung BH. Bimodal
perfluorocarbon nanoemulsions for nasopharyngeal carcinoma
targeting. Mol Imaging Biol. 2013;15(4):401–10.
26. Stella B, Arpicco S, Peracchia MT, Desmaële D, Hoebeke J, Renoir
M, et al. Design of folic acid-conjugated nanoparticles for drug
targeting. J Pharm Sci. 2000;89(11):1452–64.
27. Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymer-
ic micelles for reversal of resistant MCF-7 tumor. J Control Release.
2005;103(2):405–18.
28. Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide
staining and flow cytometry. Nat Protoc. 2006;1(3):1458–61.
29. O'Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar
Blue (resazurin) fluorescent dye for the assessment of mammalian
cell cytotoxicity. Eur J Biochem. 2000;267(17):5421–6.
30. Ottonello L, Frumento G, Arduino N, Dapino P, Tortolina G,
Dallegri F. Immune complex stimulation of neutrophil apoptosis:
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer
J Clin. 2017;67(1):7–30.
2. Wang X, Teng Z, Wang H, Wang C, Liu Y, Tang Y, et al. Increasing
the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with
multidrug resistance using a Mesoporous silica nanoparticle drug
delivery system. Int J Clin Exp Pathol. 2014;7(4):1337–47.
3. Ma J, Jemal A. Breast cancer statistics. In: Ahmad A, editor. Breast
cancer metastasis and drug resistance. New York: Springer; 2013.
4. Ferlay J, Héry C, Autier P, Sankaranarayanan R. Global burden of
breast Cancer. In: Li C, editor. Breast cancer epidemiology. New
York: Springer; 2010.
5. Trivedi PP, Kushwaha S, Tripathi DN, Jena GB. Cardioprotective
effects of hesperetin against doxorubicin-induced oxidative stress
and DNA damage in rat. Cardiovasc Toxicol. 2011;11(3):215–25.
6. Ogretmen B, Safa AR. Down-regulation of apoptosis-related Bcl-2
but not bcl-xL or BAX proteins in multidrug-resistant MCF-7/Adr
human breast cancer cells. Int J Cancer. 1996;67(5):608–14.
7. Vimala K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S.
Green synthesized doxorubicin loaded zinc oxide nanoparticles
regulates the Bax and Bcl-2 expression in breast and colon carci-
noma. Process Biochem. 2014;49(1):160–72.
8. Karroum A, Mirshahi P, Faussat AM, Therwath A, Mirshahi M,
Hatmi M. Tubular network formation by adriamycin-resistant
MCF-7 breast cancer cells is closely linked to MMP-9 and
VEGFR-2/VEGFR-3 over-expressions. Eur J Pharmacol.
2012;685(1–3):1–7.
9. Park SJ, Wu CH, Safa AR. A P-glycoprotein- and MRP1-
independent doxorubicin-resistant variant of the MCF-7 breast can-
cer cell line with defects in caspase-6, -7, -8, -9 and -10 activation
pathways. Anticancer Res. 2004;24(1):123–31.
10. Roy S, Rawat AK, Sammi SR, Devi U, Singh M, Gautam S, et al.
Alpha-linolenic acid stabilizes HIF-1 α and downregulates FASN