374 Meziane et al.
3
the sodium completely dissolved; this required only
few minutes. The alkyl bromide or dibromide (40 or
J
= 19.0 Hz CH CH-P), 1.20–1.35 (m, 16H,
H−P
3
3
CH CH CH (CH ) CH CH CHP and CH CH OP),
2
2
2
2
2
2
3
2
2
0 mmol) was then added. A reflux condenser was
1.44 (m, 2H, CH CHP), 1.75 (m, 1H, CHP), 4.09
2
13
1
then placed, and the setup was closed with a calcium
chloride tube. The reaction mixture was then irradi-
ated or heated according to the microwave or classic
(m, 4H, CH OP). C { H} NMR (CDCl , 125.9 MHz,
2
3
2
298 K): 13.2 (d,
(s, CH3 (CH ) CHP), 16.6 (d,
CH CH OP), 22.8 (s, CH CH (CH ) CHP), 27.6
J
C−P
= 5.8 Hz, CH CHP), 14.3
3
3
2
6
J
C−P
= 5.8 Hz,
5
method. The solvent was then evaporated, and H
2
O
3
3
2
3
2
2
(50 mL) and diethyl ether (150 mL) were added to the
(d,
J
= 13.6 Hz, CH CH CHP), 29.3–29.5 (s,
2
2 2 2 2 2
C−P
2
2
residue. The crude product was extracted, and the
organic layer was washed, respectively, with NaOH
CH CH CH (CH ) CH CH CHP), 30.0 (d,
J
C−P
=
3
2
1
3.9 Hz, CH CHP), 30.9 (d, J
2
C−P
= 140.3 Hz, CHP),
(
1 M) (2 × 50 mL), HCl (1 M) (2 × 50 mL), and water.
32.0 (s, CH CH CH (CH ) CH CH CHP), 61.6 (d,
3
2
2
2
2
2
2
2
The organic layer was dried over anhydrous MgSO
filtered, and evaporated.
4
,
J
= 5.8 Hz, CH OP).
C−P
2
In the case of compound (1b, 2, 3), the crude
yellow oils were purified by column chromatography
over a silica column using, first n-hexane gradually
enriched with ethyl acetate then the desired products
were recovered by methanol (5%) in ethyl acetate.
Synthesis of Diethyl Phosphonate (5). This com-
pound was prepared as described above using the
mesylate 4 instead of an alkyl bromide. Microwave:
3
1
1
20 min, 100 W: yield: 20% P { H} NMR (CDCl ,
3
1
80.9 MHz, 298 K): 35.5. H NMR (CDCl , 500 MHz,
3
3
2
98 K): 0.96 (t, 3H, JH−H = 7.3 Hz, CH
3
CH CHP),
2
3
3
Diethyldodecylphosphonate (1b). Classical heat-
1.14 (dd, 3H, J
= 7.3 Hz, J
= 11.7 Hz CH CH-
H−H
H−P
3
◦
3
ing: 4 h, 160 C, yield: 60% (the MA reaction); 24 h,
P), 1.29 (t, 6H, J
= 7.3 Hz CH CH OP), 1.65–
H−H
3
2
◦
8
4
1
5 C, yield: 20% (the MB reaction). Microwave:
1.85 (m, 2H, CH CH CHP), 4.07 (m, 4H, CH OP).
3
2
2
13
1
0 min, 250 W, yield 55% (the MA reaction); 03 min,
C { H}NMR (CDCl , 125.9 MHz, 298 K): 12.2 (d,
3
31
1
3
2
20 W, yield 95% (the MB reaction). P{ H} NMR
J
= 13.7 Hz, CH CH CHP), 12.8 (d,
J
C−P
3
=
2
C−P
3
2
1
2
(
CDCl
3
80.9 MHz, 298 K): 32.0. H NMR (CDCl
3
,
3.9 Hz, CH CHP), 16.7 (d, J
= 3.9 Hz, CH CH -
3
C−P
3
2
5
CH
CH
00 MHz, 298 K): 0.81 (t, 3H,
(CH P), 1.18–1.29 (m, 18H, CH
CH
P) 1.25 (t, 3H, JH−H = 7.0 Hz, CH
.66 (m, 2H, CH CH P), 1.75 (m, 2H, CH
J
H−H = 7.0 Hz,
OP), 23.2 (d,
J
C−P
= 3.9 Hz, CH CH CHP), 27.6
3 2
3
1
3
2
)
10CH
2
3
(CH
CH OP),
P), 4.01
, 125.9 MHz,
2
)
9
(d, J
C−P
= 13.6 Hz, CH CH CHP), 32.0 (d, J
2
2
2
C−P
=
3
2
2
3
2
140.6 Hz, CHP), 61.5 (d, J
C−P
= 7.8 Hz, CH OP).
2
1
2
1
2
2
3
1
(
m, 4H, CH
2
OP). C { H}NMR (CDCl
3
3
Tetraethyl Hexane-1, 6–diyldiphosphonate (6).
◦
298 K): 14.3 (s, CH
3
(CH
2
2
)
J
11P), 16.6 (d, JC−P = 5.8 Hz,
Classical heating: 1 h, 30–85 C, yield: 85%. Mi-
31
1
CH
3
CH
2.8 (s, CH
40.6 Hz, CH
CH CH (CH
5.6 Hz, CH CH
2
OP), 22.4 (d,
C−P = 5.8 Hz, CH
2
CH
2
P),
crowave: 2 min, 100 W, yield: 95%. P { H} NMR
1
1
2
1
CH
3
CH (CH
2
2
)
10P), 25.7 (d,
J
C−P
=
(CDCl , 80.9 MHz, 298 K): 32.0. H RMN (CDCl ,
3
3
3
2
P), 29.2–29.4–29.5–29.7–29.8–29.9 (s,
500 MHz, 298 K): 1.26 (m, 12H, J
H−H
= 6.7 Hz, CH ),
3
3
3
2
2
2
)
6
CH
CH P), 32.0 (s, CH
C−P = 5.8 Hz, CH OP). m/z (MH ):
07.17, Calcd: 307.23.
2
CH
2
CH
2
P), 30.7 (d, JC−P
=
1.43 (m, 2H, CH CH CH P), 1.57 (m, 4H, CH CH P),
2
2
2
2
2
1
13
1
2
2
2
3
CH CH (CH
2
2
2
)
9
1.66 (m, 4H, CH P), 4.0 (m, 8H, CH OP). C { H}
2
2
2
+
3
P), 61.6 (d,
J
2
NMR (CDCl , 125.9 MHz, 298 K): 16.6 (d, J
=
=
3
C−P
2
3
5.8 Hz, CH ), 22.2 (d,
J
= 5.9 Hz, CH CH P),
3
C−P
2
3
2
1
2
5.6 (d,
J
C−P = 142.6 Hz, CH
2
P), 31.6 (t,
J
C−P
2
2
Diethylisopropylphosphonate (2). Microwave:
15.6 Hz, CH CH P), 61.5 (d, J
= 5.8 Hz, CH OP).
2
2
C−P
3
1
1
+
1
8
2
1
CH
CH
0 × 2 min, 100 W, yield: 30%. P { H} NMR (CDCl
3
,
m/z (MH ): 359.09. Calcd 359.16.
1
0.9 MHz, 298 K): 35.8, H NMR (CDCl
3
, 500 MHz,
3
3
98 K): 1.11 (dd, 6H,
J
H−H = 6.5 Hz,
J
H−P
=
Tetraethyl Decane-1,10-diyldiphosphonate (7).
3
◦
1.7 Hz CH CH-P), 1.25 (t, 6H,
3
J
H−H = 6.9 Hz,
Classical heating: 2 h, 85 C, yield: 90%. Microwave:
3
3
1
1
3
CH
2
OP), 4.03 (dd, 4H, JH−H = JH−P = 6.5 Hz
3 min, 100 W, yield: 90%. P { H} NMR (CDCl ,
3
13
1
1
2
OP). C { H}NMR (CDCl
3
, 125.9 MHz, 298 K):
CHP), 16.6 (d,
80.9 MHz, 298 K): 33.0, H NMR (CDCl , 500 MHz,
3
2
3
16.1 (d,
J
C−P = 5.8 Hz, CH
3
J
C−P
298 K): 1.20 (m, 10H, CH CH CH P), 1.25 (t, 12H,
2
2
2
1
3
=
5.8 Hz, CH
3
CH
2
OP), 25.8 (d,
CHP), 61.7 (d, JC−P = 5.8 Hz, CH
J
C−P = 142.6 Hz,
J
= 7.0 Hz, CH ), 1.49–1.52 (m, 4H, CH CH P),
13
2 2
H−H
3
2
2
2
2
OP).
1.59–1.66 (m, 4H, CH P), 4.00 (m, 8H, CH OP).
C
1
{
H} NMR (CDCl
3
, 125.9 MHz, 298 K): 16.6 (d,
3
2
Diethyl Nonan-2-phosphonate (3). Microwave:
J
C−P = 5.8 Hz, CH3), 22.5 (d,
J
C−P = 3.9 Hz,
P), 25.8 (d, JC−P = 140.6 Hz, CH
CH CH CH P), 30.7 (d,
CH P), 61.5 (d,
3
1
1
1
3
5 min, 100 W, yield: 30%
P { H} NMR
CH
2
CH
2
2
P), 29.17–
1
(CDCl
3
, 80.9 MHz, 298 K): 35.8. H NMR (CDCl
3
,
29.33–29.42–29.56 (s, CH
2
2
2
2
3
3
2
500 MHz, 298 K): 0.86 (t, 3H,
J
J
H−H = 6.5 Hz,
J
C−P = 17.6 Hz, CH
2
CH
2
2
J
C−P
=
3
+
CH
3
(CH
2
)
6
CHP), 1.13 (dd, 3H,
H−H = 6.5 Hz,
7.8 Hz, CH
2
OP). m/z (MH ): 415.25. Calcd: 415.23.
Heteroatom Chemistry DOI 10.1002/hc