2334
B. Han et al.
LETTER
that the strong electron-withdrawing nitro substituent oxidant and NHPI as an organic catalyst. Extension of this
remarkably retarded the reaction. On the other hand, method to other potential substrates is underway in this
electron-donating methoxy substituent significantly laboratory.
facilitated the reaction (entry 7).
It was found that the turnover number (TON) of the cata-
lyst depended on the concentrations of the catalyst and the
substrate, as well as the reaction scale, because NHPI was
found to partly decompose under the reaction condition,
as having been reported previously.10 At least 0.5 mmol (5
mol%) of NHPI must be used for the total conversion of
1d on 10 mmol scale, corresponding to TON of 20. How-
ever, prolonged time (45 h) must be used to complete the
reaction. Therefore, 20 mol% of NHPI was used for the
best performance of the reaction.
Acknowledgment
We thank the National Natural Science Foundation of China (grant
20372030) for financial support.
References
(1) (a) Eisner, U.; Kuthan, J. Chem. Rev. 1972, 72, 1. (b) Stout,
D. M.; Meyers, A. I. Chem. Rev. 1982, 82, 223.
(2) (a) Kill, R. J.; Widdowson, D. A. In Bioorganic Chemistry,
Vol. 4; van Tamelen, E. E., Ed.; Academic Press: New York,
1978, 239–275. (b) Böcker, R. H.; Guengerich, F. P. J. Med.
Chem. 1986, 29, 1596.
(3) (a) Triggle, D. J.; Langs, D. D.; Janis, R. A. Med. Res. Rev.
1989, 9, 123. (b) Kawase, M.; Shah, A.; Gaveriya, H.;
Motohashi, N.; Sakagami, H.; Varga, A.; Molnar, J. Bioorg.
Med. Chem. 2002, 10, 1051. (c) Hilgeroth, A. Mini-Rev.
Med. Chem. 2002, 2, 235. (d) Max, I. T.; Zhang, J.;
Weglicki, W. B. Pharmacol. Res. 2002, 45, 27. (e) Suarez,
M.; Verdecia, Y.; Illescas, B.; Matinenz-Alvarez, R.;
Alvarez, A.; Ochoa, E.; Seoane, C.; Kayali, N.; Martin, N.
Tetrahedron 2003, 59, 9179.
The mechanism of the reduction of organic substrates by
DHPs has been intensively investigated, which indicated
that the reaction might proceed via either direct hydride
transfer or electron transfer followed by proton transfer
and second electron transfer, depending on the substrate
and reaction conditions.11 In the present case, however, no
reaction occurred between excessive amount of NHPI and
DHPs under argon atmosphere, demonstrating that NHPI
could not directly oxidize DHPs. The reaction did not take
place under oxygen atmosphere in the absence of NHPI,
too. Therefore, this reaction is obviously an NHPI-cata-
lyzed free radical oxidation (Scheme 2), similar to that
proposed previously by Ishii.9a In the scheme the reaction
is initiated by the reaction of NHPI with O2 to generate ph-
thalimide-N-oxyl radical (PINO) which has been detected
by ESR.9a,b PINO abstracts hydrogen from DHP to pro-
duce alkyl radical 3. Generally, alkyl radicals would react
with oxygen to form alkyl peroxyl radical, which in turn,
would produce oxygenated products.9 In the present case,
however, the strong driving force of aromatization makes
the second hydrogen abstraction by PINO and/or O2 very
effective. Therefore, the pyridine derivative is formed
exclusively rather than the oxygenated products.
(4) (a) Sabitha, G.; Reddy, G. S. K. K.; Reddy, C. S.; Yadav, J.
S. Tetrahedron Lett. 2003, 44, 4129. (b) Zolfigol, M. A.;
Safaiee, M. Synlett 2004, 827.
(5) (a) Sausins, A.; Duburs, G. Heterocycles 1988, 27, 291.
(b) Chennot, T.; Eisner, U. J. Chem. Soc., Perkin Trans. 1
1975, 926. (c) Vanden Eynde, J.-J.; D’Orazio, R.;
Havebeke, Y. V. Tetrahedron 1994, 50, 2479. (d) Pfister, J.
R. Synthesis 1990, 689. (e) Itoh, T.; Nagata, K.; Matsuya,
Y.; Miyazaki, M.; Ohsawa, A. J. Org. Chem. 1997, 62,
3582. (f) Mashraqui, S. H.; Karnik, M. A. Synthesis 1998,
713. (g) Varma, R. S.; Kumar, D. Tetrahedron Lett. 1999,
40, 21. (h) Ko, K.-Y.; Kim, J.-Y. Tetrahedron Lett. 1999,
40, 3207. (i) Anniyappan, M.; Muralidharan, D.; Perumal, P.
T. Tetrahedron 2002, 58, 5069. (j) Zhu, X.-Q.; Zhao, B.-J.;
Cheng, J.-P. J. Org. Chem. 2000, 65, 8158.
(6) (a) Lopez-Alarcon, C.; Nunez-Vergara, L. J.; Sturm, J. C.;
Squella, J. A. Electrochim. Acta 2003, 48, 505.
In conclusion, this work provides a simple metal-free cat-
alytic approach for the aromatization of Hantzsch 1,4-di-
hydropyridines with molecular oxygen as the terminal
(b) Arguello, J.; Nunez-Vergara, L. J.; Sturm, J. C.; Squella,
J. A. Electrochim. Acta 2004, 49, 4849.
(7) (a) Mashraqui, S. H.; Karnik, M. A. Tetrahedron Lett. 1998,
39, 4895. (b) Nakamichi, N.; Kawashita, Y.; Hayashi, M.
Org. Lett. 2002, 4, 3955. (c) Nakamichi, N.; Kawashita, Y.;
Hayashi, M. Synthesis 2004, 1015. (d) Heravi, M. M.;
Behbahani, F. K.; Oskooie, H. A.; Shoar, R. H. Tetrahedron
Lett. 2005, 46, 2775.
H
O
R
EtO2C
CO2Et
NO
N
H
O
PINO
(8) Jin, M.-Z.; Yang, L.; Wu, L.-M.; Liu, Y.-C.; Liu, Z.-L.
Chem. Commun. 1998, 2451.
1
O
R
(9) (a) For a review, see: Ishii, Y.; Sakaguchi, S.; Iwahama, T.
Adv. Synth. Catal. 2001, 343, 393. (b) Ishii, Y.; Iwahama,
T.; Sakaguchi, S.; Nakayama, K.; Nishiyama, Y. J. Org.
Chem. 1996, 61, 4520. (c) Iwahama, T.; Sakaguchi, S.; Ishii,
Y. Org. Process Res. Dev. 2000, 4, 94. (d) Sakaguchi, S.;
Nishiwaki, Y.; Kitamura, T.; Ishii, Y. Angew. Chem. Int. Ed.
2001, 40, 222. (e) Hirabayashi, T.; Sakaguchi, S.; Ishii, Y.
Angew. Chem. Int. Ed. 2004, 43, 1120.
CO2Et
EtO2C
NOH
O2
N
H
O
NHPI
3
O2
O
R
EtO2C
CO2Et
NO
(10) Cai, Y.; Koshino, N.; Saha, B.; Espenson, J. H. J. Org.
Chem. 2005, 70, 238.
N
O
(11) Zhu, X.-Q.; Li, H.-R.; Li, Q.; Ai, T.; Lu, J.-Y.; Yang, Y.;
Cheng, J.-P. Chem.–Eur. J. 2003, 9, 871; and references
cited therein.
PINO
NHPI
2
Scheme 2
Synlett 2005, No. 15, 2333–2334 © Thieme Stuttgart · New York