hydrogen-bond donors to TNT results in solid-state structures
with layer architectures as opposed to the herring bone motifs
seen in TNT itself. 1 and 2 form hydrogen bonded sheets con-
nected via N–H and C–H hydrogen-bond donation to nitro
acceptors. These sheets are held to each other by p-stacking
and by dipole–dipole interactions between nitro groups. The
stronger hydrogen-bonding in 3 (with its donating and accept-
ing NHOH group) gives a different structure dominated by
NHOH–NHOH dimers.
Fig. 5 Crystal structure 1, showing the disordered 6-nitro group pro-
jecting between parallel sheets of molecules.
Acknowledgements
We gratefully acknowledge the Home Office UK for financial
support for CJM, Sally Price of the UCL Centre for Theoreti-
cal and Computational Chemistry for helpful input and the
ESRF for providing a beamtime award (CH849).
Conclusions
In determining the disordered structure of 1 from XRPD data,
chemical intuition plays an essential role in identifying the dis-
ordered atoms, which can then be correctly incorporated into
the structure solution model. This approach is distinct from
the more general one of using difference Fourier maps to com-
plete a partial structure solution, the latter being problematic
when low-resolution, low quality XRPD data makes map
interpretation difficult. The combination of chemical intuition
and molecular connectivity, on the other hand, can clearly pro-
References
1
A. Esteve-Nunez, A. Caballero and J. L. Ramos, Microbiol. Mol.
Biol. Rev., 2001, 65, 335; J. D. Rodgers and N. J. Bunce, Environ.
Sci. Technol., 2001, 35, 406; H. Y. Kim and H. G. Song, J. Micro-
biol., 2000, 38, 250; N. Hannink, S. J. Rosser, C. E. French, A.
Basran, J. A. H. Murray, S. Nicklin and N. C. Bruce, Nature Bio-
tech., 2001, 19, 1168; K. A. Thorn and K. R. Kennedy, Environ.
Sci. Technol., 2002, 36, 3787.
˚
duce excellent results even at ꢃ1.8 A resolution. The XRPD
solution agrees well with the solution from single crystal data
and discrepancies between the two structures are ascribed sim-
ply to the relative amounts of diffraction data; 1111 observed
2
C. J. McHugh, R. Keir, D. Graham and W. E. Smith, Chem.
Commun., 2002, 580; R. Keir, E. Igata, M. Arundell, W. E. Smith,
D. Graham, C. J. McHugh and J. M. Cooper, Anal. Chem., 2002,
7
4, 1503.
˚
reflections to ꢃ0.8 A resolution for the single-crystal structure
3
4
5
6
C. J. McHugh, W. E. Smith, R. Lacey and D. Graham, Chem.
Commun., 2002, 2514.
G. M. Sheldrick, SHELXL-97, Program for refinement of crystal
structures, University of G o¨ ttingen, Germany, 1997.
A. N. Fitch, Nucl. Instrum. Methods Phys. Res., Sect. B, 1995, 97,
˚
compared with only 146 reflections to ꢃ1.8 A resolution in the
XRPD data set.
Large deformations from ideal sp geometry are observed in
2
the aromatic rings of 1, 2 and 3 and this is entirely in line with
expectations based on a knowledge of structural substituent
effects in benzene derivatives. The introduction of stronger
6
3.
K. Shankland, W. I. F. David and D. S. Sivia, J. Mater. Chem.,
997, 7, 569.
1
7
8
A. Boultif and D. Louer, J. Appl. Crystallogr., 1991, 24, 987.
W. I. F. David, K. Shankland, J. Cole, S. Maginn, W. D. S.
Motherwell, R. Taylor, DASH User Manual, Cambridge Crystal-
lographic Data Centre, Cambridge,2001.
9
0
1
2
W. I. F. David, K. Shankland and N. Shankland, Chem. Com-
mun., 1998, 931; K. Shankland, L. McBride, W. I. F. David, N.
Shankland and G. Steele, J. Appl. Cryst., 2002, 35, 443.
R. M. Vrcelj, J. N. Sherwood, A. R. Kennedy, H. G. Gallagher
and T. Gelbrich, Cryst. Growth Des., 2003, 10.1021/cg0340704,
in press.
1
1
1
For
a detailed survey of nitro conformations in aromatic
compounds see : A. Szumna, J. Jurczak and Z. Urba n´ czyk-
Lipkowska, J. Mol. Struct., 2000, 526, 165.
A. Domenicano, Structural substituent effects in benzene deriva-
tives in accurate molecular structures, eds. A. Domenicano and
I. Hargittai, Oxford University Press, 1992, 437–468, ch. 18.
J. Maurin and T. M. Krygowski, J. Mol. Struct., 1988, 172, 413.
F. H. Allen, Acta Crystallogr., 2002, B58, 380.
K. Wozniak, H. He, J. Klinowski, W. Jones and E. Grech, J.
Phys. Chem., 1994, 98, 137 55.
A. Bondi, J. Phys. Chem., 1964, 68, 441.
13
14
15
16
17
18
R. S. Rowland and R. Taylor, J. Phys. Chem., 1996, 100, 7384.
B. Szcz e˛ sna and Z. Urba n´ czyk-Lipkowska, New J. Chem., 2002,
26, 243.
Fig. 6 The crystal structure of 1 determined from XRPD data (red)
overlaid upon the corresponding single-crystal solution (green). Each
O-atom of the 6-nitro group is disordered between high occupancy
19 S. L. Price, A. J. Stone, J. Lucas, R. S. Rowland and A. E.
Thornley, J. Am. Chem. Soc., 1994, 116, 4910.
(
80% single crystal; 70% XRPD) and low occupancy sites and the
20 R. E. Dinnebier, M. Schweiger, B. Bildstein, K. Shankland,
W. I. F. David, A. Jobst and S. van Smallen, J. Appl. Cryst.,
2000, 33, 1199.
two structure solutions are in good agreement on the position of the
higher occupancy site. Note that the H-atoms of the 1-methyl group
in the XRPD solution have been placed in calculated positions.
21 A. Huq and P.W. Stephens, J. Pharm. Sci., 2003, 92, 244.
T h i s j o u r n a l i s Q T h e R o y a l S o c i e t y o f C h e m i s t r y a n d t h e
C e n t r e N a t i o n a l d e l a R e c h e r c h e S c i e n t i f i q u e 2 0 0 4
N e w . J . C h e m . , 2 0 0 4 , 2 8 , 1 6 1 – 1 6 5
165