LETTER
A General Thiolation of Magnesium Organometallics
2693
(2) (a) Banwell, M. G.; Flynn, B.; Hochlers, D. C. R. Chem.
Commun. 1997, 2259. (b) Banwell, M. G.; Flynn, B. L.;
Willis, A. C.; Hamel, E. Aust. J. Chem. 1999, 52, 767.
(c) Flynn, B. L.; Verdier-Pinard, P.; Hamel, E. Org. Lett.
2001, 3, 651. (d) Bates, C. G.; Gujadkur, R. K.;
Venkataraman, D. Org. Lett. 2002, 4, 2803. (e) Kwang, F.
Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517. (f) Savarin,
C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2002, 4, 4309.
(3) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.;
Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem.
Int. Ed. 2003, 42, 4302; Angew. Chem. 2003, 115, 4438.
(4) Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43,
3333.
S
Me2N
S
2
i-PrMgCl·LiCl
OH
I
OMgCl·LiCl
MgCl·LiCl
3
2.5 equiv
0 °C to r.t., 3 h
THF–CH2Cl2
r.t., 2 h
5: >99% ee
6
OH
S
N
S
(5) The price of tetramethylthiuram disulfide is 30 Euro per kg
(Aldrich).
7: 78%; >99% ee
Scheme 2
(6) (a) Greenwell, J. R. J. Org. Chem. 1970, 35, 1500. (b) Jen,
K.-Y.; Cava, M. P. Tetrahedron Lett. 1982, 23, 2001.
(c) Gronowitz, S.; Hörnfeldt, A.-B.; Temciuc, M. Synthesis
1993, 483. (d) Shen, L.-H.; Okoroafor, M. O.; Brubaker, C.
H. Jr. Organometallics 1998, 7, 825. (e) Laurence, L. M.;
Bither, S. A.; Dikson, J. K. Jr.; Logan, J. V. H.; Magnin, D.
R.; Sulsky, R. B.; DiMarco, J. D.; Gougoukas, J. Z.; Beyer,
B. D.; Taylor, S. C.; Lan, S.-J.; Ciosek, C. P. Jr.; Harrity, T.
W.; Jolibois, K. G.; Knuselman, L. K.; Slusarchyk, D. A. J.
Am. Chem. Soc. 1996, 118, 11668. (f) Priefer, R.; Lee, Y. J.;
Barrios, F.; Wosmick, J. H.; Lebuis, A.-M.; Fasrell, P. G.;
Harpp, D. N. J. Am. Chem. Soc. 2002, 124, 5626.
(25 °C, 8 h). The 3-thiolated indole 4n is converted to the
thioether 11 by the reaction with EDA (50 °C, 2 h) fol-
lowed by the alkylation with butyl iodide (25 °C, 8 h, 77%
yield, Scheme 3).
SH
1) MeLi
2) H3O+
1) EDA
2) BnCl
4d
4l
SBn
S
(7) The complexation with LiCl enhanced the reactivity of the
organomagnesium reagent by generating in situ an ate-
8: 83%
9: 84%
–
species (ArMgCl2 Li+): (a) Farkas, J. J.; Stoudt, S. J.;
SBu
Hanawalt, E. M.; Pajerski, A. D.; Richey, H. G. J.
Organometallics 2004, 23, 423. (b) Hanawalt, E. M.;
Farkas, J. J.; Richey, H. G. J. Organometallics 2004, 23,
416.
SK
KOH
1) EDA
2) BuI
4m
4n
EtOH
N
N
H
10: 95%
(8) (a) Knotter, D. M.; Grove, D. M.; Smeets, W. J. J.; Spek, A.
L.; Van Koten, G. J. Am. Chem. Soc. 1992, 114, 3400.
(b) Pichora, A.; Pregosin, P. S.; Valentini, M.; Worle, M.;
Seebach, D. Angew. Chem. Int. Ed. 2000, 39, 153. (c) Van
Klaveren, M.; Lamber, F.; Eijkelkamp, J. F. M.; Grove, D.
M.; Van Koten, G. Tetrahedron Lett. 1994, 35, 6135.
(d) Van Klaveren, M.; Persson, E. S. M.; Grove, D. M.;
Bäckvall, J.-E.; Van Koten, G. Tetrahedron Lett. 1994, 35,
5931. (e) Arink, A. M.; Braam, T. M.; Keeris, R.;
Jastrzebski, J. T. B. H.; Benhaim, C.; Rosset, S.; Alexakis,
A.; Van Koten, G. Org. Lett. 2004, 6, 1959.
(9) The iodonaphthol derivative 5 has been obtained from the
corresponding PhMe2Si derivative by treatment with ICl.
(10) We have treated also different alkyl magnesium compounds
with TMTD in the presence of LiCl and have obtained
corresponding thioderivates in excellent yields.
11: 77%
Scheme 3
In summary, we have shown that a wide range of aryl and
heteroaryl magnesium reagents react in the presence of
LiCl (1 equiv) with TMTD (3) affording the correspond-
ing dithiocarbamates in excellent yields. Due to the mild
conditions various functional groups are compatible with
this reaction. The dithiocarbamate function can be readily
converted into a thiol, a thiol salt or a thioether. So, this is
obviously facile, cheap and general10 method for the prep-
aration of the variety of sulfur-containing compounds
starting from easily accessible Grignard reagents. Exten-
sions of this method are currently being developed in our
laboratories.11
(11) Typical Procedure: Preparation of 3-Trifluoromethyl-
phenyl Dimethyldithiocarbamate (4a).
A 25 mL Schlenk flask containing a i-PrMgCl·LiCl solution
(10.5 mmol, 5.25 mL of 2.0 M solution in THF) was cooled
to 0 °C, and 3-bromotrifluoromethylbenzene (10.0 mmol,
2.25 g) was added slowly at this temperature. The mixture
was allowed to reach r.t. within 1.5 h. The exchange
completion was determined by the GC analysis of an aliquot.
The reaction mixture was cooled again to 0 °C and
tetramethylthiuram disulfide (3, 9.5 mmol, 2.28 g) in dry
CH2Cl2 (9.5 mL) was added at this temperature. After 2 h at
r.t., the mixture was poured into sat. NH4Cl solution (50
mL), the aqueous phase was extracted with CH2Cl2, the
combined organic phases dried (MgSO4), evaporated in
vacuo and the residue recrystallized from CH2Cl2–heptane.
Yield 2.12 g (84%), mp 83–84 °C.
Acknowledgment
We thank the Fonds der Chemischen Industrie and Merck Research
Laboratories (MSD) for financial support. We thank Chemetall
GmbH (Frankfurt), BASF AG (Ludwigshafen) and Lanxess AG for
generous gifts of chemicals.
References
(1) Solladié, G. In Comprehensive Organic Synthesis, Vol. 6;
Trost, B. M.; Fleming, I.; Winterfeld, E., Eds.; Pergamon
Press: Oxford, 1991, 133–170.
Synlett 2005, No. 17, 2691–2693 © Thieme Stuttgart · New York