Langmuir
Article
(10) Cai, S. F.; Duan, H. H.; Rong, H. P.; Wang, D. S.; Li, L. S.; He,
W.; Li, Y. D. Highly Active and Selective Catalysis of Bimetallic Rh3Ni1
Nanoparticles in the Hydrogenation of Nitroarenes. ACS Catal. 2013,
3, 608−612.
hydrogenation of 3-nitrostyrene to 3-aminostyrene under mild
reaction conditions to evaluate their hydrogenation perform-
ance. It is found that the catalytic activity follows the sequence
of Ir nanoparticles loaded on Fe2O3 flakes > IrFe alloy
nanoparticles coexisting with Fe2O3 flakes ≫ IrFe alloy
nanoparticles. The optimal catalyst with good stability and
recyclability is obtained with Ir1Fe4, that is, 2 nm Ir
nanoparticles loaded on Fe2O3 flakes, over which both
conversion and selectivity achieve more than 90%. Compared
with monometallic Ir nanowires, Ir nanoparticles, or Fe2O3
flakes, the excellent hydrogenation performance of Ir1Fe4
emphasizes a remarkable “synergistic effect” between Ir
nanoparticles and Fe2O3 flakes. For Ir nanoparticles, they play
the role of active centers to activate hydrogen; for Fe2O3 flakes,
they act as support and favor the preferential adsorption of
nitro groups, which account for the high chemoselectivity. This
work brings much interest in searching inexpensive metal
doping bimetallic nanomaterials as selective catalysts for
hydrogenation reaction.
(11) Lewis, L. N. Chemical Catalysis by Colloids and Clusters. Chem.
Rev. 1993, 93, 2693−2730.
(12) Kundu, S.; Liang, H. Shape-Selective Formation and Character-
ization of Catalytically Active Iridium Nanoparticles. J. Colloid Interface
Sci. 2011, 354, 597−606.
(13) Dupont, J.; Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.;
Teixeira, S. R. Transition-Metal Nanoparticles in Imidazolium Ionic
Liquids: Recycable Catalysts for Biphasic Hydrogenation Reactions. J.
Am. Chem. Soc. 2002, 124, 4228−4229.
(14) Lin, J.; Qiao, B. T.; Liu, J. Y.; Huang, Y. Q.; Wang, A. Q.; Li, L.;
Zhang, W. S.; Allard, L. F.; Wang, X. D.; Zhang, T. Design of a Highly
Active Ir/Fe(OH)x Catalyst: Versatile Application of Pt-Group Metals
for the Preferential Oxidation of Carbon Monoxide. Angew. Chem., Int.
Ed. 2012, 51, 2920−2924.
(15) Liu, G.; Zhang, H. Facile Synthesis of Carbon-Supported IrxSey
Chalcogenide Nanoparticles and Their Electrocatalytic Activity for the
Oxygen Reduction Reaction. J. Phys. Chem. C 2008, 112, 2058−2065.
(16) Baglio, V.; Sebastian, D.; D’Urso, C.; Stassi, A.; Amin, R. S.; El-
Khatib, K. M.; Arico, A. S. Composite Anode Electrode Based on
Iridium Oxide Promoter for Direct Methanol Fuel Cells. Electrochim.
Acta 2014, 128, 304−310.
(17) Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S.
R.; Dupont, J. The Use of Imidazolium Ionic Liquids for the
Formation and Stabilization of Ir0 and Rh0 Nanoparticles: Efficient
Catalysts for the Hydrogenation of Arenes. Chem. - Eur. J. 2003, 9,
3263−3269.
(18) Stowell, C. A.; Korgel, B. A. Iridium Nanocrystal Synthesis and
Surface Coating-Dependent Catalytic Activity. Nano Lett. 2005, 5,
1203−1207.
(19) Lu, T.; Wei, H. S.; Yang, X. F.; Li, J.; Wang, X. D.; Zhang, T.
Microemulsion-Controlled Synthesis of One-Dimensional Ir Nano-
wires and Their Catalytic Activity in Selective Hydrogenation of o-
Chloronitrobenzene. Langmuir 2015, 31, 90−95.
(20) Blaser, H. U.; Siegrist, U.; Steiner, H. Aromatic Nitro
Compounds: Fine Chemicals through Heterogeneous Catalysis; Wiley-
VCH: Weinheim, 2001.
AUTHOR INFORMATION
Corresponding Author
■
+86-411-84685940.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the National Natural Science
Foundation of China (21003124, 21076211, 21203181, and
11205160).
REFERENCES
■
(1) Cushing, B. L.; Kolesnichenko, V. L.; O’Connor, C. J. Recent
Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles.
Chem. Rev. 2004, 104, 3893−3846.
(2) Qi, L. M. Synthesis of Inorganic Nanostructures in Reverse
Micelles. In Encyclopedia of Surface and Colloid Science, 2nd ed.;
Somasundaran, P., Ed.; Chemical Rubber Company: New York, 2006,
6183−6207.
(21) Corma, A.; Serna, P. Chemoselective Hydrogenation of Nitro
Compounds with Supported Gold Catalysts. Science 2006, 313, 332−
334.
(22) Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik,
(3) Cantillo, D.; Baghbanzadeh, M.; Kappe, C. O. In Situ Generated
Iron OxideNanocrystals as Efficient and Selective Catalysts for the
Reduction of Nitroarenes using a Continuous Flow Method. Angew.
Chem., Int. Ed. 2012, 51, 10190−10193.
J.; Rabeah, J.; Huan, H. M.; Schunemann, V.; Bruckner, A.; Beller, M.
̈
̈
Nanoscale Fe2O3-Based Catalysts for Selective Hydrogenation of
Nitroarenes to Anilines. Science 2013, 342, 1073−1076.
(23) Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.;
Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-
Supported Platinum Single-Atom and Pseudo-Single-Atom Catalysts
for Chemoselective Hydrogenation of Functionalized Nitroarenes.
Nat. Commun. 2014, 5, 5634.
(4) Shylesh, S.; Schunemann, V.; Thiel, W. R. Magnetically Separable
̈
Nanocatalysts: Bridges between Homogeneous and Heterogeneous
Catalysis. Angew. Chem., Int. Ed. 2010, 49, 3428−3459.
(5) Kwon, S. J.; Fan, F. R. F.; Bard, A. J. Observing Iridium Oxide
(IrOx) Single Nanoparticle Collisions at Ultramicroelectrodes. J. Am.
Chem. Soc. 2010, 132, 13165−13167.
(24) Hakkinen, H.; Abbet, S.; Sanchez, A.; Heiz, U.; Landman, U.
̈
Structural, Electronic, and Impurity-Doping Effects in Nanoscale
Chemistry: Supported Gold Nanoclusters. Angew. Chem., Int. Ed. 2003,
42, 1297−1300.
(6) Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Low-
Temperature Oxidation of CO Catalysed by Co3O4 Nanorods. Nature
2009, 458, 746−749.
(25) Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.;
Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.;
Hutchings, G. J. Solvent-Free Oxidation of Primary Alcohols to
Aldehydes Using Au-Pd/TiO2 Catalysts. Science 2006, 311, 362−365.
(26) Wu, Y.; Cai, S.; Wang, D.; He, W.; Li, Y. Syntheses of Water-
Soluble Octahedral, Truncated Octahedral, and Cubic Pt−Ni
Nanocrystals and Their Structure−Activity Study in Model Hydro-
genation Reactions. J. Am. Chem. Soc. 2012, 134, 8975−8981.
(27) Sheth, P. A.; Neurock, M.; Smith, C. M. First-Principles Analysis
of the Effects of Alloying Pd with Ag for the Catalytic Hydrogenation
of Acetylene-Ethylene Mixtures. J. Phys. Chem. B 2005, 109, 12449−
12466.
(7) Juve,
́
V.; Cardinal, M. F.; Lombardi, A.; Crut, A.; Maioli, P.;
, L. M.; Del Fatti, N.; Vallee, F. Size-
Perez-Juste, J.; Liz-Marzan
́
́
́
Dependent Surface Plasmon Resonance Broadening in Nonspherical
Nanoparticles: Single Gold Nanorods. Nano Lett. 2013, 13, 2234−
2240.
(8) Della Pina, C.; Falletta, E.; Rossi, M. Highly Selective Oxidation
of Benzyl Alcohol to Benzaldehyde Catalyzed by Bimetallic Gold-
Copper Catalyst. J. Catal. 2008, 260, 384−386.
(9) Liu, X. Y.; Wang, A. Q.; Li, L.; Zhang, T.; Mou, C. Y.; Lee, J. F.
Structural Changes of Au-Cu Bimetallic Catalysts in CO Oxidation: In
situ XRD, EPR, XANES, and FT-IR Characterizations. J. Catal. 2011,
278, 288−296.
H
Langmuir XXXX, XXX, XXX−XXX