A. Börner et al.
FULL PAPER
tube was sealed. After 6 min of stirring at room temperature, the
volatiles were removed in vacuo, and the product was obtained
quantitatively as a viscous liquid. It should be stored below 10 °C
to prevent disproportionation into R2PH and R2P(O)OH (R = 4-
supporting the IR experiments and the application of BTEM. We
thank PD Dr. B. Hoge (University of Cologne) for a generous gift
of SPO 5 and valuable discussions.
F-C6H4). 1H NMR (400 MHz, CD2Cl2): δ = 8.06 (d, JP–H
=
488.60 Hz, 1 H, PH), 7.67 (m, 4 H, C6H4), 7.09 (m, 4 H, C6H4) [1] a) R. H. Crabtree, The Organometallic Chemistry of Transition
ppm. 13C NMR (101 MHz, CD2Cl2): δ = 165.1 (dd, J = 3.3, J =
252.9 Hz, CF), 133.1 (dd, J = 8.9, J = 13.1 Hz, C6H4), 128.0 (dd,
J = 3.4, J = 103.3 Hz, CP), 116.1 (dd, J = 13.9, J = 21.6 Hz, C6H4)
ppm. 19F NMR (282 MHz, CD2Cl2): δ = –106.0 (m) ppm. 31P
Metals, Wiley, New York, 2001; b) A. Börner (Ed.), Phosphorus
Ligands in Asymmetric Catalysis, Wiley-VCH, Weinheim, 2008,
vol. I–III.
[2] a) D. M. Roundhill, P. R. Sperline, W. B. Beaulieu, Coord.
Chem. Rev. 1978, 26, 263–279; b) B. Walther, Coord. Chem.
Rev. 1984, 60, 67–105.
[3] a) M. Grayson, C. E. Farley, C. A. Streuli, Tetrahedron 1967,
23, 1065–1078; b) L. D. Quin, A Guide to Organophosphorus
Chemistry, Wiley-Interscience, New York, 2000.
NMR (162 MHz, CD Cl ): δ = 17.5 ppm. IR (KBr): ν = 2327 (P–
˜
2
2
H) cm–1. MS (EI, 70 eV): m/z = 237 [M]+. C12H9F2OP (238.17):
calcd. C 60.51, H 3.81, P 13.00; found C 60.53, H 3.86, P 13.03.
Bis(tetrafluoropyridyl)phosphane Oxide (5): This compound was
[4] J. Chatt, B. T. Heaton, J. Chem. Soc. A 1968, 2745–2757.
[5] N. V. Dubrovina, A. Börner, Angew. Chem. 2004, 116, 6007–
6010; Angew. Chem. Int. Ed. 2004, 43, 5883–5886.
[6] For reviews, see: a) L. Ackermann, Synthesis 2006, 10, 1557–
1571; b) L. Ackermann, Synlett 2007, 4, 507–526; c) L. Acker-
mann, R. Born, J. H. Spatz, A. Althammer, C. J. Gschrei, Pure
Appl. Chem. 2006, 78, 209–214; d) L. Ackermann in Phospho-
rus Ligands in Asymmetric Catalysis (Ed.: A. Börner), Wiley-
VCH, Weinheim, 2008, vol. 2, pp. 831–847.
[7] For recent work, compare: a) L. Ackermann, Synlett 2007,
507–526; b) A. Pfaltz, Y. Ribourdouille, X. Feng, B. Ramalin-
gam, B. Pugin, F. Spindler WO2007135179 A1 20071129, 2007
(Chem. Abstr. 2007, 148, 11345); c) J. Bigeault, L. Giordano, I.
de Riggi, Y. Gimbert, G. Buono, Org. Lett. 2007, 9, 3567–3570;
d) J. Bigeault, I. de Riggi, Y. Gimbert, L. Giordano, G. Buono,
Synlett 2008, 1071–1075; e) B. Pugin, H. Landert, B.
Gschwend, A. Pfaltz, F. Spindler WO 2009065783 A1
20090528, 2009 (Chem. Abstr. 2009, 150, 563987); f) L. Acker-
mann, S. Barfuesser, Synlett 2009, 808–812.
[8] D. E. C. Corbridge, Phosphorus: An Outline of its Chemistry,
Biochemistry and Uses, 5th ed., Elsevier, Amsterdam, 1995, p.
336.
[9] a) Z. Luz, B. L. Silver, J. Am. Chem. Soc. 1961, 83, 4518–4521;
b) J. Reuben, D. Samuel, B. L. Silver, J. Am. Chem. Soc. 1963,
85, 3093–3096; c) D. Samuel, Pure Appl. Chem. 1964, 8, 449–
457; d) W. J. Bailey, R. B. Fox, J. Org. Chem. 1963, 28, 531–
534; e) W. J. Bailey, R. B. Fox, J. Org. Chem. 1964, 29, 1013–
1017; f) T. L. Emmick, R. L. Letsinger, J. Am. Chem. Soc. 1968,
90, 3459–3465.
synthesized by Hoge et al.[16] and generously provided for our re-
1
search. H NMR (400 MHz, [D8]THF): δ = 9.00 (br., 1 H, POH)
ppm. 13C NMR (101 MHz, [D8]THF): δ = 144.5–141.9 (m, C5NF4)
ppm. 19F NMR (282.4 MHz, [D8]THF): δ = –92.9 (m), –137.1 (m)
ppm. 31P NMR (162 MHz, [D8]THF): δ = 71.8 (quint, JP–F
=
26.9 Hz, POH) ppm. 1H NMR (300 MHz, [D8]toluene): δ = 7.87
(d, JP–H = 585.5 Hz, PH), 4.78 (br., POH) ppm. 19F NMR
(282.4 MHz, [D8]toluene): δ = –86.6 [m, P(O)H], –89.9 (m, POH),
–135.1 [m, P(O)H], –136.4 (m, POH) ppm. 31P NMR (121 MHz,
[D8]toluene): δ = 69.1 (br., POH), –22.8 [br., P(O)H] ppm. 31P
NMR (162 MHz, CD3OD): δ = 70.2 (quint, JP–F = 26.7 Hz, POD)
ppm. 31P NMR (162 MHz, CF3CD2OD): δ = 72.8 (quint, JP–F
=
27.6 Hz, POD), –15.3 [t, J = 92.4 Hz, P(O)D], –15.0 [d, J =
606.0 Hz, P(O)H] ppm. IR (ATR): ν = 2402 (P–H) cm–1.
˜
2-(Diphenylphosphanyl)-2-propanol (6): A solution of diphenylphos-
phane oxide (3; 60 mg, 0.3 mmol) in acetone (1.5 mL) was concen-
trated to dryness in vacuo after 36 h of stirring at room tempera-
ture. Then the residue was dissolved in [D8]THF (0.4 mL) at 50 °C.
On cooling to room temperature, the product precipitated as
colourless needles (20 mg, 26%). M.p. 125–127 °C. 1H NMR
(300 MHz, CD2Cl2/[D6]acetone): δ = 7.88 (m, 4 H, C6H5), 7.28 (m,
6 H, C6H5), 3.01 (br., 1 H, OH), 1.19 (d, J = 13.4 Hz, 6 H, CH3)
ppm. 13C NMR (75 MHz, CD2Cl2/[D6]acetone): δ = 132.5 (d, JP–
= 7.9 Hz, o-C6H5), 132.0 (d, JP–C = 89.9 Hz, i-C6H5), 131.5 (d,
C
JP–C = 2.7 Hz, p-C6H5), 128.2 (d, JP–C = 10.7 Hz, m-C6H5), 24.8
(d, JP–C = 6.7 Hz, CH3) ppm; C–OH signal not found. 31P NMR
[10] P. Nylen, Z. Anorg. Allg. Chem. 1938, 235, 161–182.
[11] N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infra-
red and Raman Spectroscopy, Academic Press, New York, 1964,
pp. 299–300, 402.
[12] D. Magiera, A. Szmigielska, K. M. Pietrusiewicz, H. Duddeck,
Chirality 2004, 16, 57–64.
(121 MHz, CD2Cl2/[D6]acetone):
δ = 31.3 ppm. C15H17O2P
(260.27): calcd. C 69.22, H 6.58; found C 69.3, H 6.23.
X-ray Crystal Structure Analysis of 2: Data were collected with a
STOE IPDS II diffractometer by using graphite-monochromated
Mo-Kα radiation. The structure was solved by direct methods
(SHELXS-97)[35] and refined by full-matrix least-squares tech-
niques on F2 (SHELXL-97).[35] XP (Bruker AXS) was used for
graphical representations. C14H15OP, Mr = 230.23, orthorhombic,
space group P212121, a = 5.6391(11), b = 7.583(2), c = 28.459(6) Å,
V = 1217.0(4) Å3, Z = 4, ρcalcd. = 1.257 gcm–3, µ = 0.201 mm–1, T
= 200 K, 17197 reflections measured, 2570 independent reflections
(Rint = 0.0394) of which 2313 were observed [IϾ2σ(I)], R1 = 0.0279
[IϾ2σ(I)], wR2 = 0.0778 (all data), 151 refined parameters.
[13] Yu. A. Ustynyuk, Yu. V. Babin, Ross. Khim. Zh. 2007, 51, 130–
138.
[14] D. B. Chesnut, Heteroat. Chem. 2000, 11, 73–80.
[15] F. Wang, P. L. Polavarapu, J. Org. Chem. 2000, 65, 7561–7565.
[16] B. Hoge, S. Neufeind, S. Hettel, W. Wiebe, C. Thoesen, J. Or-
ganomet. Chem. 2005, 690, 2382–2387.
[17] The curve in the middle of Figure 1 was calculated by using
B3LYP/6-31+G* [σ(H3PO4) = 362.13 ppm, scaled onto δ(31P)
of H3PO4 (δ = 0 ppm)] and the lower curve by using GIAO-
B3LYP/6-311+G*//B3LYP/6-311+G* [σ(PPh3) = 294.61 ppm,
scaled onto δ(31P) of PPh3 (δ = –6.0 ppm)].
[18] For a review, see: I. A. Shuklov, N. V. Dubrovina, A. Börner,
Synlett 2007, 2925–2943.
Acknowledgments
[19] a) A. N. Chekhlov, Zh. Strukt. Khim. 2001, 42, 152–155 (russ.);
b) A. Y. Garner, US 3346647, 1967 (Chem. Abstr. 1967, 67,
116943).
Financial support was provided by Evonik Oxeno GmbH. One of
us (A. C.) is grateful for a research scholarship from the Degussa
Stiftung. We thank Dr. O. Zayas, Mrs. H. Borgwald, Mrs. M. Gei-
sendorf and Ms. K. Romeike for their skilled technical assistance.
We also thank the group of Prof. Dr. M. Garland at the Institute
for Chemical and Engineering Sciences (ICES) in Singapore for
[20] Originally, this signal was attributed to the corresponding tri-
valent P–OH tautomer 3B; see ref.[12]
[21] A similar conclusion was drawn by Hoge et al. from experi-
ments considering the equilibrium between (C6F5)2P(O)H and
2740
www.eurjoc.org
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2010, 2733–2741