Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 4
COMMUNICATION
ChemComm
fluorescent species absorbing during the reaction, we expect 5. W. Richtering, Smart Colloidal Materials, Springer, Berlin,
Heidelberg 2006.
. V. Mittal, Advanced Polymer Nanoparticles, CRC Press, Boca
Raton 2011.
. L. Barner, A. S. Quick, A. P. Vogt, V. Winkler, T. Junkers and C.
Barner-Kowollik. Polym. Chem. 2012, 3, 2266.
. A. Mihi, M. Ocana and H. Miguez. Adv. Mater. 2006, 18, 2244.
. J. Ugelstad, A. Berge, T. Ellingsen, R. Schmid, T. N. Nilsen, P. C.
Mork, P. Stenstad, E. Hornes and O. Olsvik. Prog. Polym. Sci.
DOI: 10.1039/D0CC01557A
that in the photochemical synthesis of fluorescent particles, this
reaction is likely ideal. The appearance of the particles (after
addition of acid) under both ambient and UV (λmax = 365 nm)
light is also shown in Fig. 2b.
Finally, in terms of functionality, we have previously shown
that residual functional groups are both present on the surface
and can be further reacted.27 Herein, residual alkyne
functionalities – a readily reactive functional group for further
6
7
8
9
1992, 17, 87.
particle functionalisation – were expected. IR analysis of the 10. T. Yamasaki and T. Tsutsui. Appl. Phys. Lett. 1998, 72, 1957.
synthesised particles shows a residual -C≡C- stretching peak at 11. R. Herrero-Vanrell and M. F. Refojo. Adv. Drug Deliv. Rev. 2001,
150 cm- (Fig. S15, ESI†). In addition, the characteristic
1
52, 5.
2
-
1
12. L. C. Katz, A. Burkhalter and W. J. Dreyer. Nature 1984, 310,
absorption peak at 3300 cm for the terminal alkyne C-H stretch
is also present, although absorption from the newly formed
4
98.
3. F. W. Prinzen and J. B. Bassingthwaighte. Cardiovasc. Res. 2000,
5, 13.
1
1
1
1
-1
hydroxyl groups from 3100 – 3700 cm overlaps and prevents
this peak from resolving.
4
4. J. A. Steinkamp, J. S. Wilson, G. C. Saunders and C. C. Stewart.
Science 1982, 215, 64.
5. M. Tokunaga, N. Imamoto and K. Sakata-Sogawa. Nat. Methods
In conclusion, we introduce a simple, mild and fast method
of particle synthesis, highlighting the power of exploiting
modern synthetic photochemistry to impart novel properties
and functionality to materials. Utilising the novel cycloaddition
of a terminal, asymmetric alkyne with a photo-excitable oMBA
for cross-linking and particle formation, fluorescent particles
2008, 5, 159.
6. F. Caruso, Colloids and Colloid Assemblies: Synthesis,
Modification, Organization and Utilization of Colloid Particles,
Wiley-VCH, Weinham, Germany 2003.
can subsequently be prepared via a catalytic dehydrative 17. D. Dendukuri and P. S. Doyle. Advanced Materials 2009, 21,
4
071.
elimination. The main advantages are two-fold; first, the
presence of fluorescent species during particle formation could
lead to undesirable absorption of photons, leading to side
reactions and reduced control over the reaction, impacting
important factors such as reproducibility and particle
dispersities. Second, the subsequent acid-triggered generation
of fluorescence was shown to be both controllable and highly
sensitive, maximising the potential use and application of the
1
8. C. Wang, X. Zhang, M. Podgórski, W. Xi, P. Shah, J. Stansbury
and C. N. Bowman. Macromolecules 2015, 48, 8461.
9. C. Wang, M. Podgorski and C. N. Bowman. Mater. Horiz. 2014,
1
1, 535.
2
2
0. J. Yeow and C. Boyer. Adv. Sci. 2017, 4, 1700137.
1. M. J. Derry, L. A. Fielding and S. P. Armes. Prog. Polym. Sci.
2016, 52, 1.
2
2. A. B. Lowe. Polymer 2016, 106, 161.
particles; the non-fluorescent 1,4-dihydronapthalene moiety is 23. S. L. Canning, G. N. Smith and S. P. Armes. Macromolecules
stable in the absence of acid, but rapidly undergoes re-
2016, 49, 1985.
aromatisation to generate a fluorescence naphthalene moiety 24. N. J. Warren and S. P. Armes. J. Am. Chem. Soc. 2014, 136,
10174.
upon exposure to acid.
2
2
2
2
5. S. Aubert, M. Bezagu, A. C. Spivey and S. Arseniyadis. Nat. Rev.
Chem. 2019, 3, 706.
6. J. P. Hooker, L. Delafresnaye, L. Barner and C. Barner-Kowollik.
Mater. Horiz. 2019, 6, 356.
C.B.-K. acknowledges the Australian Research Council (ARC)
for funding in the form of a Laureate Fellowship underpinning
his photochemical research program as well as the Queensland
University of Technology (QUT) for key continued support. C.B.-
K. and L. B. acknowledge additional funding in the context of an
ARC Linkage grant on advanced particle synthesis. The authors
7. J. P. Hooker, F. Feist, L. Delafresnaye, L. Barner and C. Barner-
Kowollik. Adv. Funct. Mater. 2020, n/a, 1905399.
8. J. L. Segura and N. Martín. Chem. Rev. 1999, 99, 3199.
acknowledge the facilities and the scientific and technical 29. T. Bach and J. P. Hehn. Angew. Chem. Int. Ed. 2011, 50, 1000.
assistance from the Australian Microscopy & Microanalysis 30. J. Mateos, A. Cherubini-Celli, T. Carofiglio, M. Bonchio, N.
Research Facility (AMMRF) at the Central Analytical Research
Facility (CARF) operated by the Institute for Future
Environments (IFE).
Marino, X. Companyó and L. Dell’Amico. Chem. Commun. 2018,
4, 6820.
1. D. S. Tyson, A. D. Carbaugh, F. Ilhan, J. Santos-Pérez and M. A.
Meador. Chem. Mat. 2008, 20, 6595.
5
3
3
3
2. F. Ilhan, D. S. Tyson and M. A. Meador. Org. Lett. 2006, 8, 577.
3. P. G. Sammes and T. W. Wallace. J. Chem. Soc. Perk. T. 1 1975,
Conflicts of interest
There are no conflicts to declare.
1
845.
3
4. B. J. Arnold, S. M. Mellows, P. G. Sammes and T. W. Wallace. J.
Chem. Soc. Perk. T. 1 1974, 401.
35. G. Porter and M. F. Tchir. J. Chem. Soc. A 1971, 3772.
Notes and references
1
2
3
4
. S. W. Cheung, US Patent 5132242, 1992.
. S. W. Cheung, US Patent 5194300, 1993.
. H. Kawaguchi. Prog. Polym. Sci. 2000, 25, 1171.
. C. K. Ober and K. P. Lok, US Patent 4617249, 1986.
4
| Chem. Commun., 2020, 00, 1-3
This journal is © The Royal Society of Chemistry 2020
Please do not adjust margins