21
§
T 5 173(1) K, Monoclinic, space group P2(1)/c, a 5 11.1009(12),
84 2 4 2 2 w
Cryatal data for 2: C58H K N O P , M 5 1009.43 g mol ,
˚
b 5 19.529(2), c 5 14.3917(15) A, a 5 90, b 5 112.539(2), c 5 90u,
3
23
21
,
˚
V 5 2881.6(5) A , Z 5 2, rcalcd 5 1.163 Mg m , m 5 0.263 mm
reflections collected: 14823, independent reflections: 5091 (Rint 5 0.0259),
Final R indices [I . 2sI]: R 5 0.0539, wR 5 0.1626, R indices (all data):
5 0.0689, wR 5 0.1716. The unique coordinated ether molecule has its
CH groups disordered equally over two sites (only one of which is shown
1
2
R
1
2
2
in Fig. 1). No allowance was made for the ether H atoms. CCDC 606651.
For crystallographic data in CIF or other electronic format see DOI:
10.1039/b609198a
1
2
Review: O. Delacroix and A. C. Gaumont, Curr. Org. Chem., 2005, 9,
851–1882.
(a) A. M. Kawaoka and T. J. Marks, J. Am. Chem. Soc., 2005, 127,
311–6324; (b) M. R. Douglass, C. L. Stern and T. J. Marks, J. Am.
1
Scheme 2 A possible mechanism of catalytic addition of phosphines to
carbodiimides.
6
Chem. Soc., 2001, 123, 10221–10238; (c) A. D. Sadow and A. Togni,
J. Am. Chem. Soc., 2005, 127, 17012–17024; (d) H. Ohmiya, H. Yorimitsu
and K. Oshima, Angew. Chem., Int. Ed., 2005, 44, 2368–2370; (e)
M. O. Shulyupin, M. A. Kazankova and I. P. Beletskaya, Org. Lett.,
route to substituted phosphaguanidines, with excellent tolerability
to aromatic carbon–halogen bonds. In addition, this catalytic
process is very clean and can also be carried out under solvent-free
conditions, showing high potential of practical use.
2002, 4, 761–763.
3
(a) J. Grundy, M. P. Coles and P. B. Hitchcock, Dalton Trans., 2003,
2573–2577; (b) M. P. Coles and P. B. Hitchcock, Chem. Commun., 2002,
This work was partly supported by RIKEN’s Ecomolecular
Science Research Program and by the Natural Science Foundation
of China (20328201).
2794–2795; (c) N. E. Mansfield, M. P. Coles and P. B. Hitchcock, Dalton
Trans., 2005, 2833–2841; (d) J. Grundy, M. P. Coles, A. G. Avent and
P. B. Hitchcock, Chem. Commun., 2004, 2410–2411; (e) N. E. Mansfield,
M. P. Coles and P. B. Hitchcock, Dalton Trans., 2006, 2052–2054; (f)
M. P. Coles, Dalton Trans., 2006, 985–1001; (g) N. E. Mansfield,
M. P. Coles, A. G. Avent and P. B. Hitchcock, Organometallics, 2006, 25,
2470–2474; (h) D. H. M. W. Thewissen, H. P. M. M. Ambrosius,
H. L. M. van Gaal and J. J. Steggerda, J. Organomet. Chem., 1980, 192,
101–113.
4 (a) D. H. M. W. Thewissen and H. P. M. M. Ambrosius, Recl. Trav.
Chim. Pays-Bas, 1980, 99, 344–346; (b) H. P. M. M. Ambrosius,
A. H. I. M. van der Linden and J. J. Steggerda, J. Organomet. Chem.,
1980, 204, 211–220.
Notes and references
{
A typical procedure for the preparation of phosphaguanidines 1 by use of
Me Si) NK as a catalyst. Under a dry and oxygen-free argon atmosphere,
a THF solution (3 mL) of diphenylphosphine (376 mg, 2.02 mmol) was
added to a THF solution (2 mL) of (Me Si) NK (4 mg, 0.02 mmol) in a
(
3
2
3
2
Schlenk tube. Then N,N9-diisopropylcarbodiimide (252 mg, 2.00 mmol)
was added to the above reaction mixture. After 5 min of stirring, the
solvent was removed under reduced pressure. The residue was extracted
with hexane and filtered to give a clean solution. After removal of the
solvent under vacuum, the residue was recrystallized in hexane to provide a
colorless solid 1a. It should be noted that this type of phosphaguanidine is
very sensitive to oxygen, and must be stored under an inert atmosphere. IR
5 K. Issleib, H. Schmidt and H. Meyer, J. Organomet. Chem., 1980, 192,
33–39.
6
For examples of alkali-metal-catalyzed reactions, see: (a) T. Harada,
K. Mizunashi and K. Muramatsu, Chem. Commun., 2006, 638–639; (b)
T. Harada, K. Muramatsu, T. Fujiwara, H. Kataoka and A. Oku, Org.
Lett., 2005, 7, 779–781; (c) N. Yamagiwa, H. Qin, S. Matsunaga and
M. Shibasaki, J. Am. Chem. Soc., 2005, 127, 13419–13417; (d) M. Itoh,
K. Inoue, J. Ishikawa and K. Iwata, J. Organomet. Chem., 2001, 629,
(
Nujol): n 5 3431 (N–H), 1599 (C5N), 1462, 1377, 1173, 1026, 743,
21 1
6
96 cm ; H NMR (300 MHz, C
CH(CH ), 1.23 (d, J 5 6.3 Hz, 6H, CH(CH
NH), 4.28–4.43 (m, 2H, CH), 7.03–7.05 (m, 6H, C
6 6
D ): d 5 0.94 (d, J 5 6.6 Hz, 6H,
3
3
)
2
3
)
2
), 3.63 (d, J 5 6.3 Hz, 1H,
), 7.42–7.47 (m, 4H,
6 5 6 6
C H ); C NMR (75 MHz, C D ): d 5 22.5, 25.3, 42.9, 52.2 (d,
3 3
6 5
H
13
1
–6; (e) J. Ishikawa and M. Itoh, J. Catal., 1999, 185, 454–461; (f)
L. Assadourian and G. Gau, Appl. Organomet. Chem., 1991, 5, 167–172;
g) H. Prines and H. E. Eschinazi, J. Am. Chem. Soc., 1956, 78,
178–1180.
2
J
PC 5 35.3 Hz), 129.0 (d, JPC 5 6.8 Hz), 129.3, 134.3 (d, JPC 5 19.8 Hz),
1 1 31 1
1
(
3
35.5 (d,
160 MHz, C
13.1834; Found 313.1853.
Isolation of the potassium phosphaguanidinate [Ph
2). Under a dry and oxygen-free argon atmosphere, a THF solution (3 mL)
of diphenylphosphine (372 mg, 2.00 mmol) was added to a THF solution
5 mL) of (Me Si) NK (399 mg, 2.00 mmol) in a Schlenk tube. Then
J
PC 5 13.7 Hz), 152.4 (d,
JPC 5 31.6 Hz); P{ H} NMR
(
1
+
6
D
6
): d 5 218.5; HRMS Calcd for [M + H]
19 26 2
C H N P
7
8
For examples of rare-earth-metal-catalyzed nucleophilic addition to
carbodiimides, see: (a) W.-X. Zhang, M. Nishiura and Z. Hou, J. Am.
Chem. Soc., 2005, 127, 16788–16789; (b) W.-X. Zhang, M. Nishiura and
Z. Hou, Synlett, 2006, 8, 1213–1216.
For examples of transition-metal-promoted nucleophilic addition to
carbodiimides, see: (a) J. Vicente, J. A. Abad, M.-J. L o´ pez-S a´ ez and
P. G. Jones, Organometallics, 2006, 25, 1851–1853; (b) F. Montilla,
A. Pastor and A. Galindo, J. Organomet. Chem., 2004, 689, 993–996; (c)
T.-G. Ong, G. P. A. Yap and D. S. Richeson, J. Am. Chem. Soc., 2003,
2 2 2 2
PC(NCy) K(OEt )]
(
(
3
2
N,N9-dicyclohexylcarbodiimide (413 mg, 2.00 mmol) was added to the
above reaction mixture. After 1 h of stirring, the solvent was removed
under reduced pressure. The residue was extracted with ether and filtered to
give a clean solution. The solution volume was reduced under vacuum to
precipitate 2 as light yellow crystalline powder (969 mg, 0.96 mmol, 96%
yield). Single crystals of 2 suitable for X-ray analysis were grown in ether at
room temperature overnight. IR (Nujol): n 5 2122, 1582, 1471, 1377, 1339,
125, 8100–8101.
2
2
9
For examples of amidinate and guanidinate complexes having a m-g ,g -
structure, see: (a) C. Knapp, E. Lork, P. G. Watson and R. Mews, Inorg.
Chem., 2002, 41, 2014–2025; (b) G. R. Giesbrecht, A. Shafir and
J. Arnold, J. Chem. Soc., Dalton Trans., 1999, 3601–3604; (c)
P. B. Hitchcock, M. F. Lappert and M. Layh, J. Chem. Soc., Dalton
Trans., 1998, 3113–3117; (d) P. B. Hitchcock, M. F. Lappert and
D.-S. Liu, J. Organomet. Chem., 1995, 488, 241–248; (e) M. S. Eisen and
M. Kapon, J. Chem. Soc., Dalton Trans., 1994, 3507–3510; (f) D. Stalke,
M. Wedler and F. T. Edelmann, J. Organomet. Chem., 1992, 431,
C1–C5.
2
1 1
1
1
076, 979, 740 cm ; H NMR (400 MHz, C
2H, (CH CH O), 1.21–1.86 (br, 40H, CH
CH(Cy)), 3.28 (q, J 5 7.2 Hz, 8H, (CH CH O), 6.76–6.80 (m, 4H, C
.03–7.09 (m, 8H, C ), 7.65 (br, 8H, C
): d 5 15.8, 25.0, 26.0, 35.5, 55.8, 66.0, 129.0 (d, JPC 5 6.6 Hz), 129.3,
6
D
6
): d 5 1.01 (t, J 5 7.2 Hz,
(Cy)), 3.11–3.16 (m, 4H,
),
6 5
H ); C NMR (100 MHz,
3
2
)
2
2
3
2
)
2
6 5
H
1
3
7
6
H
5
3
6 6
C D
1
2
1
J
34.3 (d,
J
PC 5 18.9 Hz), 135.9 (d,
J
PC 5 16.5 Hz), 139.8 (d,
PC 5 34.6 Hz); P{ H} NMR (160 MHz, C ): d 5 214.8, 218.0,
20.6; Anal. Calcd for C58 : C, 69.01; H, 8.39; N, 5.55;
Found: C, 68.96; H, 8.18; N, 5.38%.
1
31
1
6 6
D
2
84 2 4 2 2
H K N O P
3
814 | Chem. Commun., 2006, 3812–3814
This journal is ß The Royal Society of Chemistry 2006