Angewandte Chemie International Edition
10.1002/anie.202013172
COMMUNICATION
quick decomposition. Furthermore, the activity of catalyst 2 can
be completely suppressed by pre-mixing it with tetrabutyl
ammonium chloride (TBACl), presumably by the chloride blocking
the binding site of the catalyst.[19] In addition, hidden Na catalysis
Beer, Chem. Commun. 2016, 52, 8645. d) G. Cavallo, P. Metrangolo, R.
Milan, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chem. Rev. 2016,
116, 2478.
+
[2]
[3]
a) R. Wilcken, M. O. Zimmermann, A. Lange, A. C. Joerger, F. M.
Boeckler, J. Med. Chem. 2013, 56, 1363.b) A. V. Jentzsch, Pure Appl.
Chem. 2015, 87(1), 15. c) G. Berger, P Frangville, F. Meyer, Chem.
Commun. 2020, 56, 4970.
was again ruled out due to the inactivity of NaBArF
.
4
2
4
6
(30 mol%)
(30 mol%)
(30 mol%)
3 (30 mol%)
5 (30 mol%)
7 (30 mol%)
a) R. B. Walsh, C. W. Padgett, P. Metrangolo, G. Resnati, T. W. Hanks,
W. T. Pennington, Cryst. Growth Des. 2001, 1, 165. b) P. Metrangolo, F.
Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew. Chem. Int. Ed. 2008,
47, 6114. c) A. Mukherjee, S. Tothadi, G. R. Desiraju, Acc. Chem. Res.
BF3 Etherate (30 mol%)
blank
Iodine (30 mol%)
2 + TOACl (30 mol%)
NaBArF (30 mol%)
1
00
2014, 47, 2514. d) K.-N. Truong, J. M. Rautiainen, K. Rissanen, R.
Puttreddy, Cryst. Growth Des. 2020, 20, 5330.
8
6
4
2
0
0
0
0
0
[
[
4]
5]
a) R. Tepper, U. S. Schubert, Angew. Chem. Int. Ed. 2018, 57, 6004. b)
J. Pancholi, P. D. Beer, Coord. Chem. Rev. 2020, 213281. c) M. S. Taylor,
Coord. Chem. Rev. 2020, 413, 213270.
a) P. Auffinger, F. A. Hays, E. Westhof, P. S. Ho, Proc. Natl. Acad. Sci
USA 2004, 101 (48), 16789. b) A. R. Voth, P. Khuu, K. Oishi, P. S. Ho,
Nature Chem. 2009, 1, 74. c) E. Danelius, H. Andersson, P. Jarvoll, K.
Lood, J. Gräfenstein, M. Erdélyi, Biochemistry 2017, 3265.
[
6]
a) D. Bulfield, S. M. Huber, Chem. Eur. J. 2016, 22, 14434. b) R. L. Sutar,
S. M. Huber, ACS Catal. 2019, 9, 9622. b) M. Breugst, J. J. Koenig, Eur.
J. Org. Chem. 2020, 5473.
0
2
4
6 time [h]8
10
12
Figure 8. Yield-vs-time profile for the Diels-Alder reaction between 1,3-
cyclohexadiene 14 and methyl vinyl ketone 15.
[7]
a) A. Bruckmann, M. A. Pena, C. Bolm, Synlett 2008, 6, 900 b) F. Kniep,
S. H. Jungbauer, Q. Zhan, S. M. Walter, S. Schindler, I. Schnapperelle,
E. Herdtweck, S. M. Huber, Angew. Chem. Int. Ed. 2013, 125, 7166. c)
S. H. Jungbauer, S. M. Walter, S. Schindler, L. Rout, F. Kniep, S. M.
Huber, Chem. Commun. 2014, 50, 6281. d) S. H. Jungbauer, S. M. Huber,
J. Am. Chem. Soc. 2015, 137, 12110. e) J.-P. Gliese, S. H. Jungbauer,
S. M. Huber, Chem. Commun. 2017, 53, 12052. f) A. Dreger, P. Wonner,
E. Engelage, S. M. Walter, R. Stoll, S. M. Huber, Chem. Commun. 2019,
55, 8262. g) M. H. H. Voelkel, P. Wonner, S. M. Huber, ChemistryOpen
Subsequently, other Lewis acids were also employed for
comparison reasons. Catalysis of this reaction has not been
reported with HB donors before, and indeed Schreiner’s thiourea
7
as (neutral) organocatalyst induced no reaction. With the
classical Lewis acid BF -etherate, a faster reaction compared to
was found (92% yield of product), while other ones like AlCl
3
2
3
2020, 9, 214.
2
and Zn(OTf) failed under these conditions due to their low
[
8]
9]
S. M. Walter, S. H. Jungbauer, F. Kniep, S. Schindler, E. Herdtweck, S.
M. Huber, J. Fluorine Chem. 2013, 150, 14.
solubility in DCM. Even though the performance of XB donor 2 is
a bit lower than the one of BF -etherate, this same-ballpark
3
[
[
M. Breugst, D. von der Heiden, Chem. Eur. J. 2018, 24, 9187.
activity still represents, to the best of our knowledge, the first case
in which a synthetic XB donor reaches the strength of such Lewis
acids.
10] a) T. Wirth, Hypervalent Iodine Chemistry, 1st ed., Springer, Berlin,
Heidelberg, 2003. b) “Hypervalent Iodine”: T. Dohi, Y. Kita in Iodine
Chemistry and Applications (Ed.: T. Kaiho), Wiley, Hoboken, 2014, pp.
1
03-157. c) I. F. D. Hyatt, L. Dave, N. David, K. Kaur, M. Medard, C.
In conclusion, the first application of a bidentate iodine(III)-based
XB donor in organocatalysis was presented. In three benchmark
reactions featuring either the activation of a carbonyl or a nitro
group, this catalyst decidedly outperformed monodentate variants
as well as our formerly strongest iodine(I)-based organocatalyst
Mowdalla, Org. Biomol. Chem. 2019, 17, 7822. d) W. W. Chen, A. B.
Cuenca, A. Shafir, Angew. Chem. Int. Ed. 2020, 59, 16294.
[
11] a) V. V. Zhdankin, ARKIVOC 2009, 1, 1. b) Yoshimura, A. V. V. Zhdankin,
Chem. Rev. 2016, 116, 3328. c) C. Brunner, A. Andries-Ulmer, G. M.
Kiefl, T. Gulder, Eur. J. Org. Chem. 2018, 2615. d) R. Tessier, J. Ceballos,
N. Guidotti, R. Simonet-Davin, B. Fierz, J. Waser, Chem. 2019, 5, 2243.
12] a) E. A. Merrit, B. Olofsson, Angew. Chem. Int. Ed. 2009, 48, 9052. b) A.
Boelke, P. Finkbeiner, B. J. Nachtsheim, Beilstein J. Org. Chem. 2018,
6
, with it being twice the only catalyzing system. This highly
preordered bis(iodolium) derivative is thus approaching the
potency of Lewis acids like BF . A bidentate mode of activation
[
3
was clearly indicated by comparison experiments, a solid-state
structure, and DFT calculations. We anticipate that this class of
XB donors will find frequent use in organocatalysis, and further
studies in this regard are underway.
1
2
4
4, 1263. c) M. Wang, S. Cheng, X. Jiang, Chem. Asian J. 2018, 13,
195. d) A. Pacheco, Benichou, T. Besson, C. Fruit, Catalysts 2020, 10,
83.
[
13] a) “Arylation with Diaryliodonium Salts”: B. Olofsson, in Hypervalent
Iodine Chemistry (Ed.: T. Wirth) Topics in Current Chemistry vol. 373,
Springer, Cham, 2015, pp. 135-166. b) A. Yoshimura, A. Saito, V. V.
Zhdankin, Chem. Eur. J. 2018, 24, 15156.
References
[
14] V. V. Zhdankin, P. J. Stang, Chem. Rev. 2008, 108, 5299.
15] a) „Halogen Bonding in Hypervalent Iodine Compounds”: L. Catalano, G.
Cavallo, P. Metrangolo, G. Resnati in Hypervalent Chemistry, Vol. 373 of
Current Chemistry (Ed.: T. Wirth), Springer, Cham, 2016, pp. 289-309.
[1]
a) M. Erdélyi, Chem. Soc. Rev., 2012, 41, 3547. b) G. R. Desiraju, P. S.
Ho, L. Kloo, A. C. Legon, R. Marquardt, P. Metrangolo, O. Politzer, G.
Resnati, K. Rissanen, Pure Appl. Chem. 2013, 1711. c) A. Brown, P. D.
[
This article is protected by copyright. All rights reserved.