Communications
22.7 ppm (CH3); elemental analysis: calcd (%) for C5H10O3 (118.17):
C 59.15, H 8.54; found: C 59.01, H 8.59.
by using the 4-methoxyphenyl-substituted dinaphthophos-
phepine ligand 4b at temperatures of 100–1208C. Whereas 3-
oxobutyrate and 3-oxopentanoate gave enantioselectivities of
93–95% ee, the 4-chloro-3-oxobutyrate led only to 38% ee.[24]
The phenyl-substituted b-ketoester gave up to 95% ee. In
agreement with the previous findings, the deuterated ligand
4 f showed a significantly different selectivity than that of
ligand 4a in every hydrogenation. Hence, the observed
deuterium effect on the selectivity seems to be general for
this type of reaction.
In conclusion, we have shown for the first time that
monodentate phosphine ligands can be used efficiently for the
ruthenium-catalyzed hydrogenation of b-ketoesters. The
catalysts are remarkably temperature-tolerant: Enantioselec-
tivities of up to 95% ee were possible, even at 100–1208C. A
comparison of 4a with structurally related 2a and 3a
demonstrates the superiority of phosphines over phosphites,
phosphonates, and phosphoramidites. Interestingly, the use of
deuterated phenyl compounds 3b and 4 f led to the observa-
tion of an isotope effect on the enantioselectivity of the
reaction, which may be of interest to asymmetric reactions in
general.
Received: April 1, 2004
Keywords: b-ketoesters · asymmetric catalysis · hydrogenation ·
.
ruthenium
[1] a) R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley,
New York, 1994; b) Transition Metals for Organic Synthesis
(Eds.: M. Beller, C. Bolm), Wiley-VCH, Weinheim, 1998;
c) Comprehensive Asymmetric Catalysis (Eds.: E. N. Jacobsen,
A. Pfaltz, H. Yamamoto), Springer, Berlin, 1999.
[2] Reviews: a) M. McCarthy, P. J. Guiry, Tetrahedron 2001, 57,
3809 – 3843; b) X. Zhang, Enantiomer 1999, 4, 541 – 555; c) S.
Gladiali, D. Fabbri, Chem. Ber. 1997, 130, 543 – 554; d) F.
Lagasse, H. B. Kagan, Chem. Pharm. Bull. 2000, 48, 315 – 324.
[3] S. Servi, Synthesis 1990, 1.
[4] a) R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H.
Kumobayashi, S. Akutagawa, J. Am. Chem. Soc. 1987, 109,
5856 – 5858; b) M. Kitamura, T. Ohkuma, S. Inoue, N. Sayo, H.
Kumobayashi, S. Akutagawa, T. Ohta, H. Takaya, R. Noyori, J.
Am. Chem. Soc. 1988, 110, 629 – 631.
[5] a) O. Labeeuw, D. Blanc, P. Phansavath, V. Ratovelomanana-
Vidal, J. P. Genet, Eur. J. Org. Chem. 2004, 2352 – 2358; b) V.
Ratovelomanana-Vidal, C. Girard, R. Touati, J. P. Tranchier, B.
Ben Hasine, J. P. Genet, Adv. Synth. Catal. 2003, 345, 261 – 274;
c) C. Girard, J. P. Genet, M. Bulliard, Eur. J. Org. Chem. 1999,
2937 – 2942; d) P. Bertus, P. Phansavath, V. Ratovelomanana-
Vidal, J. P. Genet, A. R. Touati, B. Ben Hasine, Tetrahedron:
Asymmetry 1999, 10, 1369 – 1372; e) J. P. Genet, V. Ratoveloma-
nana-Vidal, M. C. Cano De Andrade, X. Pfister, P. Guerreiro,
J. Y. Lenoir, Tetrahedron Lett. 1995, 36, 4801 – 4804; f) J. P.
Genet, C. Pinel, V. Ratovelomanana-Vidal, S. Mallart, X. Pfister,
L. Bischoff, M. C. Cano De Andrade, S. Darses, C. Galopin, J. A.
Laffitte, Tetrahedron: Asymmetry 1994, 5, 675 – 690.
[6] T. Sturm, W. Weissensteiner, F. Spindler, Adv. Synth. Catal. 2003,
345, 160 – 164.
[7] a) K. V. L. Crepy, T. Imamoto, Adv. Synth. Catal. 2003, 345, 79 –
101; b) T. Yamamoto, N. Taya, M. Kawada, T. Huang, T.
Imamoto, Tetrahedron Lett. 1999, 40, 2577 – 2580.
[8] T. Ireland, K. Tappe, G. Grossheimann, P. Knochel, Chem. Eur. J.
2002, 8, 843 – 852.
[9] Y.-G. Zhou, W. Tang, W.-B. Wang, W. Li, X. Zhang, J. Am. Chem.
Soc. 2002, 124, 4952 – 4953.
[10] a) A. Hu, H. L. Ngo, W. Lin, Angew. Chem. 2004, 116, 2555 –
2558; Angew. Chem. Int. Ed. 2004, 43, 2501 – 2504; b) R.
ter Halle, B. Colasson, E. Schulz, M. Spagnol, M. Lemaire,
Tetrahedron Lett. 2000, 41, 643 – 646; c) V. Blandin, J.-F.
Carpentier, A. Mortreux, Tetrahedron: Asymmetry 1998, 9,
2765 – 2768; d) P. J. Pye, K. Rossen, R. A. Reamer, R. P. Volante,
P. J. Reider, Tetrahedron Lett. 1998, 39, 4441 – 4444; e) M. J.
Burk, T. G. P. Harper, K. S. Kalberg, J. Am. Chem. Soc. 1995,
117, 4423 – 4424.
Experimental Section
Unless otherwise noted, all chemicals are commercially available and
were used without further purification. The b-ketoesters 5a–d were
distilled under an argon atmosphere. Products were fully character-
ized (b.p., IR, MS, elemental analysis, NMR).
General procedure: in situ preparation of ruthenium catalyst:[5]
[Ru(cod)(methallyl)2] (0.038 mmol) and ligand 2a, 3, or
4
(0.076 mmol) were placed in a dried 25-mL Schlenktube under an
argon atmosphere, and anhydrous and degassed acetone (5 mL) was
added. After the dropwise addition of a solution of HBr in methanol
(0.33 mL, 0.29m) a brown precipitate was formed. Stirring was then
continued over 30 min, the solvent was removed in vacuo, and
methanol (20 mL) or ethanol (for substrates 5c and 5d) was added.
Asymmetric hydrogenation of b-ketoesters 5a–d: Catalytic
hydrogenation experiments were carried out in a Parr stainless-steel
autoclave (100 mL). In a typical experiment, the autoclave was
charged with a mixture of the catalyst [L2RuBr2] prepared in situ and
5a (3.80 mmol) in methanol (20 mL) under a stream of argon. The
autoclave was stirred under 40–80 bar pressure of hydrogen at 60–
1208C for 16–48 h. The autoclave was cooled to room temperature,
and the hydrogen was released. The reaction mixture was filtered
over silica gel, and the enantiomeric excess was determined by GC
(Lipodex E) or HPLC (Chiracel OD-H). Most of the hydrogenation
products have been described previously. Methyl 3-hydroxybutyrate
(6a): GC (25 m Lipodex E, 958C isothermal): tr = 4.9 (S), 5.7 min (R);
methyl 3-hydroxyvalerate (6b): GC (25 m Lipodex E, 858C isother-
mal): tr = 10.9 (S), 11.6 min (R); ethyl 3-hydroxy-4-chlorobutyrate
(6c): GC (25 m Lipodex E, 958C isothermal): tr = 20.4 (R), 20.6 min
(S); ethyl 3-hydroxy-3-phenylpropionate (6d): HPLC (OD-H,
hexane/ethanol 95:5, 0.5 mLminÀ1), tr = 10.1 (S), 11.5 min (R).
6a: B.p. 63–668C/10 Torr; IR (KBr): n˜ = 3439 br, 3140 w, 2974 w,
2967 m, 2937 m, 1737 br vs, 1439 vs, 1410 s, 1377 s, 1298 s, 1269 s, 1195 s,
1178 s, 1170 w, 1126 w, 1089 w, 1082 w, 946 s, 886 s, 862 m, 719 m, 598 m,
593 s, 475 cmÀ1 w; MS (70 eV): m/z (%): 103 (16) [MÀMe]+, 100 (3)
[MÀOH]+, 87 (16) [MÀOMe]+, 85 (5), 74 (50), 71 (26), 61 (12), 59
(10) [COOCH3]+, 45 (55) [CHOHCH3]+, 43 (100), 42 (26), 31 (14)
[CH3O]+, 29 (17), 15 (21); 1H NMR (400 MHz, CDCl3): d = 4.10–4.06
(m, 1H; CH), 3.58 (s, 3H; OCH3), 3.30 (s, 1H; OH), 2.34 (m, 2H;
CH2), 1.11 ppm (d, J = 6.3 Hz, 3H; CH3); 13C NMR (100.6 MHz,
CDCl3): d = 173.2 (CO), 64.2 (C-OH), 51.7 (CH3O), 43.0 (CH2),
[11] D. J. Ager, S. A. Laneman, Tetrahedron: Asymmetry 1997, 8,
3327 – 3355.
[12] For a recent review on monophosphines, see: a) I. V. Komarov,
A. Börner, Angew. Chem. 2001, 113, 1237 – 1240; Angew. Chem.
Int. Ed. 2001, 40, 1197 – 1200; for some successful previous
examples, see: b) F. Guillen, J.-F. Fiaud, Tetrahedron Lett. 1999,
40, 2939 – 2942; c) W. S. Knowles, M. J. Sabacky, B. D. Vineyard,
J. Chem. Soc. Chem. Commun. 1972, 10 – 11; d) J. D. Morrison,
R. E. Burnett, A. M. Aguiar, C. J. Morrow, C. Phillips, J. Am.
Chem. Soc. 1971, 93, 1301 – 1303; e) M. J. Burk, J. E. Feaster,
R. L. Harlow, Tetrahedron: Asymmetry 1991, 2, 569 – 592; f) A.
5068
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 5066 –5069