I. V. Trushkov, V. K. Brel / Tetrahedron Letters 46 (2005) 4777–4779
4779
8. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.
E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.;
Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.;
Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.;
Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.;
Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.;
Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz,
J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko,
A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R.
L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;
Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P.
M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J.
L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.;
Pople, J. A. Gaussian 98, Revision A.7; Gaussian: Pitts-
burgh, PA, 1998.
9. Trushkov, I. V. Presented at the XIV International
Conference on Physical Organic Chemistry, Florianopolis,
Brazil, 1998.
10. Bernasconi, C. F. Acc. Chem. Res. 1987, 20, 301–308.
11. Compound 1: liquid, bp 64–65 °C (60 mm). 1H NMR
(200 MHz, CDCl3): d = 4.18–4.21 (m, 2H), 6.51–6.86 (m,
2H); 13C NMR (50.3 MHz, CDCl3): d = 40.95 (s), 133.0
thermic: calculations by HF/6-31G, MP2/6-311G** and
MP2/6-311++G** gave reaction energies of ꢀ5.5, ꢀ3.8
and ꢀ4.3 kcal/mol, respectively. The data in Table 2
demonstrates that both azide and thiocyanate ions are
too weak to deprotonate 1 or 7. In the case of cyanide,
both deprotonation of 1 and reprotonation of the allyl
anion 8 leading to 7 are exothermic processes. The low
reactivity of 1 in nucleophilic substitution reactions, ex-
plains the unusual behaviour of cyanide but ÔnormalÕ
reactivity of azide and thiocyanate ions. In the case of
cyanide, the exothermic proton transfer predominates.
Deprotonation is impossible for azide and thiocyanate
ions due to high endothermicity. So, for azide and thio-
cyanate, an SN2 reaction is the only possible process.
It was found that N3ꢀ and SCNꢀ react with 3-chloro-1-
pentafluorosulfanylprop-1-ene by SN2 reaction but
treatment of this substrate with CNꢀ leads to 1-
chloro-3-pentafluorosulfanylprop-1-ene by base-cata-
lyzed double bond migration. These results have been
interpreted using ab initio calculations at the MP2/6-
311++G** level. It was shown that proton transfer from
1 to a cyanide ion is an exothermic process, in contrast
to the other studied nucleophiles. At the same time, 1 is
an unreactive substrate in SN20 processes and has low
reactivity in SN2 reactions. The structures of 1, 4–7 were
(pent, JC–F = 7.4 Hz), 143.55 (d pent, JC–F = 1.6 Hz, JC–F
=
21.3 Hz); 19F NMR (188 MHz, CDCl3): d = 140.56 (m,
incl. app. d, JF–F = 148.0 Hz, 4F), 157.67–160.86 (m, 1F).
Elemental analysis: % calcd for C3H4ClF5S: C, 17.79; H,
1.99; S, 15.83%; found: C, 17.94; H, 2.07; S, 15.67%.
Compound 4: liquid, bp 83 °C (20 mm). 1H NMR (200
MHz, CDCl3): d = 4.26 (t, br, JH–H = 5.6 Hz, 1H), 4.31–
4.41 (m, 2H), 6.53–6.83 (m, 2H); 13C NMR (50.3 MHz,
CDCl3): d = 59.97 (s), 137.36 (pent, JC–F = 7.0 Hz), 140.22
(d pent, JC–F = 1.7 Hz, JC–F = 20.7 Hz); 19F NMR (188
MHz, CDCl3): d = 141.30 (m, incl. app. d, JF–F = 150.9 Hz,
4F), 159.68–162.88 (m, 1F). Elemental analysis: % calcd for
C3H5F5OS: C, 19.57; H, 2.74; S, 17.40%; found: C, 19.42;
H, 2.82; S, 17.57%. Compound 5: oil. 1H NMR (200 MHz,
CDCl3): d = 4.09 (d pent, JH–H = 2.4 Hz, JH–H = 2.0 Hz,
2H), 6.47–6.59 (m, 1H), 6.74 (d pent t, JH–H = 8.4 Hz,
JH–F = 6.2 Hz, JH–H = 1.8 Hz, 1H); 13C NMR (50.3 MHz,
CDCl3): d = 49.97 (s), 132.71 (pent, JC–F = 7.1 Hz), 142.90
(d pent, JC–F = 1.7 Hz, JC–F = 21.3 Hz); 19F NMR (188
MHz, CDCl3): d = 140.39 (m, incl. app. d, JF–F = 150.5 Hz,
4F), 157.94–161.13 (m, 1F). Elemental analysis: % calcd for
C3H4F5N3S: C, 17.23; H, 1.93; S, 15.32%; found: C, 17.48;
H, 2.12; S, 15.60%. Compound 6: oil. 1H NMR (200 MHz,
CDCl3): d = 3.65–3.66 (m, 1H), 3.67–3.69 (m, 1H), 6.54–
6.86 (m, 2H); 13C NMR (50.3 MHz, CDCl3): d = 33.24 (s),
110.49 (s), 131.41 (pent, JC–F = 7.0 Hz), 145.12 (d pent,
JC–F = 1.5 Hz, JC–F = 20.1 Hz); 19F NMR (188 MHz,
CDCl3): d = 140.51 (m, incl. app. d, JF–F = 150.4 Hz, 4F),
156.61–159.81 (m, 1F). Elemental analysis: % calcd for
C4H4F5NS2: C, 21.33; H, 1.79; S, 28.48%; found: C, 21.47;
H, 1.84; S, 28.56%. Compound 7: liquid, bp 72 °C (65 mm).
1
13
proved by H, 19F and C NMR spectroscopy.11
Acknowledgements
This work was supported by grants from the European
Office of Aerospace Research and Development
(EOARD # 037004) and the International Science and
Technology Center (ISTC # 2791).
References and notes
1. (a) Gard, G. L.; Woolf, C. W. U.S. Patent 3,448,121, 1969
(C.A., 1970, 72, 12547h); (b) Gard, G. L.; Bach, J.; Woolf,
C. W. Brit. Patent 1,167,112, 1969 (allied Chemical Corp.),
(C.A., 1970, 72, 21366a); (c) Gilbert, E. E.; Gard, G. L.
US Patent 3,475,453, 1969 (C.A., 1970, 72, 208771F); (d)
Banks, R. E.; Haszeldine, R. N. Br. Patent 1,145,263, 1969
(C.A., 1969, 70, 97807z); (e) Sheppard, W. A. U.S. Patent
3,219,690, 1965 (C.A., 1966, 64, 8090e).
2. (a) Witucki, E. F.; Frankel, M. B. J. Chem. Eng. Data
1979, 24, 382–383; (b) Sitzmann, M. E.; Gilligan, W. H.;
Ornellas, D. L.; Thrasher, J. S. J. Energ. Mater. 1990, 8,
352–374.
1H NMR (200 MHz, CDCl3): d = 4.55 (dd pent, JH–H
7.2 Hz, JH–H = 0.5 Hz, JH–F = 7.6 Hz, 2H), 6.12 (dd,
JH–H = 7.2 Hz, JH–H = 7.6 Hz, 1H), 6.50 (dt, JH–H
=
3. Bovin, J. L. Can. Patent 1,085,875, 1980.
4. Sitzmann, M. E. J. Fluorine Chem. 1995, 70, 31–38.
5. Case, J. R.; Ray, N. H.; Roberts, H. L. J. Chem. Soc.
1961, 2066–2070.
6. Cignarella, G.; Pasqualucci, C. R.; Gallo, G. G.; Testa, E.
Tetrahedron 1964, 20, 1057–1062.
7. Smith, M. B.; March, J. March’s Advanced Organic
Chemistry. Reactions, Mechanisms, and Structure, 5th
ed.; Wiley, 2000, 2083 pp.
=
7.2 Hz, JH–H = 1.0 Hz, 1H); 13C NMR (50.3 MHz, CDCl3):
d = 67.05 (dt pent, JC–F = 1.0 Hz, JC–F = 16.5 Hz), 120.91
(pent, JC–F = 4.1 Hz), 126.58 (pent, JC–F = 1.0 Hz); 19F
NMR (188 MHz, CDCl3): d = 143.72 (m, incl. app. d,
JF–F = 145.0 Hz, 4F), 157.50–161.23 (m, 1F). Elemental
analysis: % calcd for C3H4ClF5S: C, 17.79; H, 1.99; S,
15.83%; found: C, 17.84; H, 2.05; S, 15.97%.