Pleas De ad l to o nn oT tr aa nd sj au cs t ti omn as rgins
Page 8 of 9
Journal Name
ARTICLE
photosensitizers for photocatalytic hydrogen evolution. 13.
Among the two complexes, MCS-B5M with –COOH linker
Communications, 2009, 3577-3579D. OI: 10.1039/C9DT01506J
Q. Li, Y. Che, H. Ji, C. Chen, H. Zhu, W. Ma and J. Zhao,
Physical Chemistry Chemical Physics, 2014, 16, 6550-6554.
A. Tiwari and U. Pal, international journal of hydrogen
energy, 2015, 40, e9079.
1
1
1
1
4.
5.
6.
7.
moieties at the ancillary ligands exhibit efficient capability of
-1
hydrogen evolution of 4.2 mmolh and high TON 84,959 after
h in the presence of sacrificial electron donor under visible
5
light irradiation. The efficient photochemical performance of
the
composite is in conformity with the panchromatic light
A. Kumari, I. Mondal and U. Pal, New Journal of Chemistry,
2
015, 39, 713-720.
K. Maeda, M. Eguchi, W. J. Youngblood and T. E. Mallouk,
Chemistry of Materials, 2009, 21, 3611-3617.
harvesting capability of MCS-B5M throughout the visible light
III/IV
range and a high oxidation potential (Eox=1.21 V for Ru ) in 18.
aqueous media allowing facile regeneration of the oxidised
sensitizer. To the best of our knowledge, this study is the first
G. Li, M. F. Mark, H. Lv, D. W. McCamant and R. Eisenberg,
Journal of the American Chemical Society, 2018, 140,
2575-2586.
G. Koyyada, N. S. Pilli, J. H. Jung, K. K. Mandari, B.
Shanigaram and M. Chandrasekharam, International
Journal of Hydrogen Energy, 2018, 43, 6963-6976.
Y. Liu, G. Chen, S. M. Yiu, C. Y. Wong and T. C. Lau,
ChemCatChem, 2018, 10, 501-504.
1
9.
report of such ruthenium-phenolate complexes working as
photosensitizers for visible-light-driven hydrogen evolution
from water. Moreover, this work also highlights the
importance of ancillary ligands for such photosensitizers in
developing effective photocatalyst systems.
2
0.
1.
2
D. T. Sawyer, A. Sobkowiak and J. L. Roberts Jr.,
Electrochemistry for Chemists, John Wiley & Sons, New
York, second ed. edn., 1995.
Acknowledgements
B.N.M. acknowledges SERB-DST for National Post-Doctoral
Fellowship (Ref. No. PDF/2017/001198). A.T. express thanks to
CSIR for a Senior Research Fellowship and AcSIR for the Ph.D.
enrolment. U.P. and M.C. thanks to DAE/BRNS (GAP-0728) and
DST (File No. DST/TM/SERI/FR/92(G) for their respective
research grants.
2
2.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.
A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.
Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.
Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F.
Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N.
Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.
Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J.
Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E.
Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K.
Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.
Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B.
Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Journal,
References
1
.
J. L. L.R. Brown, J.M. Roney, E.E. Adams, The Great
Transition: Shifting from Fossil Fuels to Solar and Wind
Energy, W.W. Norton & Company, New York, First edition
edn., 2015.
2
3
4
.
.
.
A. J. Bard and M. A. Fox, Accounts of Chemical Research,
1
995, 28, 141-145.
P. D. Frischmann, K. Mahata and F. Würthner, Chemical
Society Reviews, 2013, 42, 1847-1870.
2
009.
L. Cao, D. Chen, W.-Q. Wu, J. Z. Tan and R. A. Caruso,
Journal of Materials Chemistry A, 2017, 5, 3645-3654.
J. Kiwi and M. Grätzel, Nature, 1979, 281, 657.
M. A. Gross, A. Reynal, J. R. Durrant and E. Reisner,
Journal of the American Chemical Society, 2013, 136, 356-
2
3.
4.
F. Weigend and R. Ahlrichs, Physical Chemistry Chemical
Physics, 2005, 7, 3297-3305.
5
6
.
.
2
J. Lee, J. Kwak, K. C. Ko, J. H. Park, J. H. Ko, N. Park, E. Kim,
T. K. Ahn, J. Y. Lee and S. U. Son, Chemical
Communications, 2012, 48, 11431-11433.
C. Pérez León, L. Kador, B. Peng and M. Thelakkat, The
Journal of Physical Chemistry B, 2006, 110, 8723-8730.
H. Arora, C. Philouze, O. Jarjayes and F. Thomas, Dalton
Transactions, 2010, 39, 10088-10098.
T. W. Rees and E. Baranoff, Polyhedron, 2014, 82, 37-49.
H.-J. Park, K. H. Kim, S. Y. Choi, H.-M. Kim, W. I. Lee, Y. K.
Kang and Y. K. Chung, Inorganic chemistry, 2010, 49,
3
66.
2
5.
6.
7
.
W. J. Youngblood, S.-H. A. Lee, Y. Kobayashi, E. A.
Hernandez-Pagan, P. G. Hoertz, T. A. Moore, A. L. Moore,
D. Gust and T. E. Mallouk, Journal of the American
Chemical Society, 2009, 131, 926-927.
2
2
2
7.
8.
8
9
.
.
K. Maeda, G. Sahara, M. Eguchi and O. Ishitani, ACS
Catalysis, 2015, 5, 1700-1707.
P. Du, J. Schneider, F. Li, W. Zhao, U. Patel, F. N.
Castellano and R. Eisenberg, Journal of the American
Chemical Society, 2008, 130, 5056-5058.
7
340-7352.
29.
30.
31.
O. Suryani, Y. Higashino, J. Y. Mulyana, M. Kaneko, T.
Hoshi, K. Shigaki and Y. Kubo, Chemical Communications,
1
0.
E. A. Geary, L. J. Yellowlees, L. A. Jack, I. D. Oswald, S.
Parsons, N. Hirata, J. R. Durrant and N. Robertson,
Inorganic chemistry, 2005, 44, 242-250.
2
017, 53, 6784-6787.
A. K. Pal, S. Nag, J. G. Ferreira, V. Brochery, G. La Ganga, A.
Santoro, S. Serroni, S. Campagna and G. S. Hanan,
Inorganic chemistry, 2014, 53, 1679-1689.
S. H. Wadman, J. M. Kroon, K. Bakker, R. W. Havenith, G.
P. van Klink and G. van Koten, Organometallics, 2010, 29,
1
1.
2.
C. d. Lentz, O. Schott, T. Auvray, G. Hanan and B. Elias,
Inorganic chemistry, 2017, 56, 10875-10881.
S. Jasimuddin, T. Yamada, K. Fukuju, J. Otsuki and K. Sakai,
Chemical communications, 2010, 46, 8466-8468.
1
1
569-1579.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins