IcmF Is a Pivalyl-CoA Mutase
A., and Robinson, J. A. (1999) Insertional inactivation of methylmalonyl
coenzyme A (CoA) mutase and isobutyryl-CoA mutase genes in Strepto-
myces cinnamonensis: influence on polyketide antibiotic biosynthesis. J.
Bacteriol. 181, 5600–5605
ciency and limits of productive bacterial degradation of methyl tert-butyl
ether and related compounds. Appl. Environ. Microbiol. 73, 1783–1791
25. Toraya, T., Tamura, N., Watanabe, T., Yamanishi, M., Hieda, N., and
Mori, K. (2008) Mechanism-based inactivation of coenzyme B12-depen-
dent diol dehydratase by 3-unsaturated 1,2-diols and thioglycerol.
J. Biochem. 144, 437–446
5. Rohwerder, T., Breuer, U., Benndorf, D., Lechner, U., and Müller, R. H.
(2006) The alkyl tert-butyl ether intermediate 2-hydroxyisobutyrate is de-
graded via a novel cobalamin-dependent mutase pathway. Appl. Environ.
Microbiol. 72, 4128–4135
26. Tang, K. H., Chang, C. H., and Frey, P. A. (2001) Electron transfer in the
substrate-dependent suicide inactivation of lysine 5,6-aminomutase. Bio-
chemistry 40, 5190–5199
6. Erb, T. J., Rétey, J., Fuchs, G., and Alber, B. E. (2008) Ethylmalonyl-CoA
mutase from Rhodobacter sphaeroides defines a new subclade of coen-
zyme B12-dependent acyl-CoA mutases. J. Biol. Chem. 283, 32283–32293
7. Mancia, F., and Evans, P. (1998) Conformational changes on substrate
binding to methylmalonyl CoA mutase and new insights into the free
radical mechanism. Structure 6, 711–720
27. Maiti, N., Widjaja, L., and Banerjee, R. (1999) Proton transfer from histi-
dine 244 may facilitate the 1,2 rearrangement reaction in coenzyme B12
-
dependent methylmalonyl-CoA mutase. J. Biol. Chem. 274, 32733–32737
28. Gaal, T., Bartlett, M. S., Ross, W., Turnbough, C. L., Jr., and Gourse, R. L.
(1997) Transcription regulation by initiating NTP concentration: rRNA
synthesis in bacteria. Science 278, 2092–2097
8. Mancia, F., Keep, N. H., Nakagawa, A., Leadlay, P. F., McSweeney, S.,
Rasmussen, B., Bösecke, P., Diat, O., and Evans, P. R. (1996) How coen-
zyme B12 radicals are generated: the crystal structure of methylmalonyl-
coenzyme A mutase at 2 Å resolution. Structure 4, 339–350
29. Leipe, D. D., Wolf, Y. I., Koonin, E. V., and Aravind, L. (2002) Classification
and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317,
41–72
9. Drennan, C. L., Huang, S., Drummond, J. T., Matthews, R. G., and Lidwig,
30. Pandit, S. B., and Srinivasan, N. (2003) Survey for G-proteins in the pro-
karyotic genomes: prediction of functional roles based on classification.
Proteins 52, 585–597
M. L. (1994) How a protein binds B12: a 3.0 Å X-ray structure of B12
binding domains of methionine synthase. Science 266, 1669–1674
-
10. Rohwerder, T., and Müller, H. (2008) in Vitamin B: New Research (Elliot,
C. M., ed.) pp. 81–98, Nova Science Publishers, Hauppauge, NY
11. Gruber, K., Puffer, B., and Kräutler, B. (2011) Vitamin B12-derivatives-
enzyme cofactors and ligands of proteins and nucleic acids. Chem. Soc.
Rev. 40, 4346–4363
31. Probian, C., Wülfing, A., and Harder, J. (2003) Anaerobic mineralization of
quaternary carbon atoms: isolation of denitrifying bacteria on pivalic acid
(2,2-dimethylpropionic acid). Appl. Environ. Microbiol. 69, 1866–1870
32. Rezanka, T., Siristova, L., Schreiberová, O., Rezanka, M., Masák, J., Mel-
zoch, K., and Sigler, K. (2011) Pivalic acid acts as a starter unit in a fatty acid
and antibiotic biosynthetic pathway in Alicyclobacillus, Rhodococcus and
Streptomyces. Environ. Microbiol. 13, 1577–1589
12. Toraya, T. (2000) Radical catalysis of B12 enzymes: structure, mechanism,
inactivation, and reactivation of diol and glycerol dehydratases. Cell. Mol.
Life Sci. 57, 106–127
33. Wittinghofer, A., and Vetter, I. R. (2011) Structure-function relationships
of the G domain, a canonical switch motif. Annu. Rev. Biochem. 80,
943–971
13. Padovani, D., and Banerjee, R. (2009) A G-protein editor gates coenzyme
B
12 loading and is corrupted in methylmalonic aciduria. Proc. Natl. Acad.
Sci. U.S.A. 106, 21567–21572
34. Soundararajan, M., Yang, X., Elkins, J. M., Sobott, F., and Doyle, D. A.
(2007) The centaurin ␥-1 GTPase-like domain functions as an NTPase.
Biochem. J. 401, 679–688
14. Padovani, D., and Banerjee, R. (2006) Assembly and protection of the
radical enzyme, methylmalonyl-CoA mutase, by its chaperone. Biochem-
istry 45, 9300–9306
35. Koller-Eichhorn, R., Marquardt, T., Gail, R., Wittinghofer, A., Kostrewa,
D., Kutay, U., and Kambach, C. (2007) Human OLA1 defines an ATPase
subfamily in the Obg family of GTP-binding proteins. J. Biol. Chem. 282,
19928–19937
15. Stols, L., Gu, M., Dieckman, L., Raffen, R., Collart, F. R., and Donnelly, M. I.
(2002) A new vector for high-throughput, ligation-independent cloning
encoding a tobacco etch virus protease cleavage site. Protein Expr. Purif.
25, 8–15
36. Kajiura, H., Mori, K., Shibata, N., and Toraya, T. (2007) Molecular basis for
specificities of reactivating factors for adenosylcobalamin-dependent diol
and glycerol dehydratases. FEBS J. 274, 5556–5566
16. Lanzetta, P. A., Alvarez, L. J., Reinach, P. S., and Candia, O. A. (1979) An
improved assay for nanomole amounts of inorganic phosphate. Anal.
Biochem. 100, 95–97
37. Mori, K., Bando, R., Hieda, N., and Toraya, T. (2004) Identification of a
reactivating factor for adenosylcobalamin-dependent ethanolamine am-
monia lyase. J. Bacteriol. 186, 6845–6854
17. Babior, B. M., Carty, T. J., and Abeles, R. H. (1974) The mechanism of
action of ethanolamine ammonia-lyase, a B12-dependent enzyme. The
reversible formation of 5Ј-deoxyadenosine from adenosylcobalamin dur-
ing the catalytic process. J. Biol. Chem. 249, 1689–1695
38. Zelder, O., Beatrix, B., Leutbecher, U., andBuckel, W. (1994)Characterization
of the coenzyme-B12-dependent glutamate mutase from Clostridium cochle-
arium produced in Escherichia coli. Eur. J. Biochem. 226, 577–585
39. Chang, C. H., and Frey, P. A. (2000) Cloning, sequencing, heterologous
expression, purification, and characterization of adenosylcobalamin-de-
pendent D-lysine 5,6-aminomutase from Clostridium sticklandii. J. Biol.
Chem. 275, 106–114
18. Alm, E. J., Huang, K. H., Price, M. N., Koche, R. P., Keller, K., Dubchak, I. L.,
and Arkin, A. P. (2005) The MicrobesOnline web site for comparative
genomics. Genome Res. 15, 1015–1022
19. Reddick, J. J., and Williams, J. K. (2008) The mmgA gene from Bacillus
subtilis encodes a degradative acetoacetyl-CoA thiolase. Biotechnol. Lett.
30, 1045–1050
40. Dobson, C. M., Wai, T., Leclerc, D., Wilson, A., Wu, X., Doré, C., Hudson,
T., Rosenblatt, D. S., and Gravel, R. A. (2002) Identification of the gene
responsible for the cblA complementation group of vitamin B12-respon-
sive methylmalonic acidemia based on analysis of prokaryotic gene ar-
rangements. Proc. Natl. Acad. Sci. U.S.A. 99, 15554–15559
41. Hubbard, P. A., Padovani, D., Labunska, T., Mahlstedt, S. A., Banerjee, R.,
and Drennan, C. L. (2007) Crystal structure and mutagenesis of the met-
allochaperone MeaB: insight into the causes of methylmalonic aciduria.
J. Biol. Chem. 282, 31308–31316
20. Brigham, C. J., Budde, C. F., Holder, J. W., Zeng, Q., Mahan, A. E., Rha, C.,
and Sinskey, A. J. (2010) Elucidation of -oxidation pathways in Ralstonia
eutropha H16 by examination of global gene expression. J. Bacteriol. 192,
5454–5464
21. Zhang, Y. X., Denoya, C. D., Skinner, D. D., Fedechko, R. W., McArthur,
H. A., Morgenstern, M. R., Davies, R. A., Lobo, S., Reynolds, K. A., and
Hutchinson, C. R. (1999) Genes encoding acyl-CoA dehydrogenase
(AcdH) homologues from Streptomyces coelicolor and Streptomyces aver-
mitilis provide insights into the metabolism of small branched-chain fatty
acids and macrolide antibiotic production. Microbiology 145, 2323–2334
22. Matsuoka, H., Hirooka, K., and Fujita, Y. (2007) Organization and function
of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation.
J. Biol. Chem. 282, 5180–5194
42. Lerner-Ellis, J. P., Dobson, C. M., Wai, T., Watkins, D., Tirone, J. C.,
Leclerc, D., Doré, C., Lepage, P., Gravel, R. A., and Rosenblatt, D. S. (2004)
Mutations in the MMAA gene in patients with the cblA disorder of vita-
min B12 metabolism. Hum. Mutat. 24, 509–516
43. Solano-Serena, F., Marchal, R., Heiss, S., and Vandecasteele, J. P. (2004)
Degradation of isooctane by Mycobacterium austroafricanum IFP 2173:
growth and catabolic pathway. J. Appl. Microbiol. 97, 629–639
23. Rohwerder, T., and Müller, R. H. (2010) Biosynthesis of 2-hydroxyisobu-
tyric acid (2-HIBA) from renewable carbon. Microb. Cell Fact. 9, 13
24. Müller, R. H., Rohwerder, T., and Harms, H. (2007) Carbon conversion effi-
3732 JOURNAL OF BIOLOGICAL CHEMISTRY
VOLUME 287•NUMBER 6•FEBRUARY 3, 2012