Protein Complex in Branched-chain Amino Acid Metabolism
17. Gao, Z., Young, R. A., Li, G., Najafi, H., Buettger, C., Sukumvanich, S. S.,
that there is competition between GTP and PMP-BCATm to
Wong, R. K., Wolf, B. A., and Matschinsky, F. M. (2003) Endocrinology
144, 1949–1957
bind GDH1. On the other hand, PMP-BCATm does not have
a direct effect on ADP binding to GDH1. These results sug-
gest that either PMP-BCATm binds to the GTP-binding site
of GDH1 or binding of PMP-BCATm changes the conforma-
18. Hutton, J. C., Sener, A., and Malaisse, W. J. (1980) J. Biol. Chem. 255,
7340–7346
19. Sener, A., and Malaisse, W. J. (1980) Nature 288, 187–189
tion of the GTP-binding site of GDH1, which ultimately dis- 20. Wallin, R., Hall, T. R., and Hutson, S. M. (1990) J. Biol. Chem. 265,
6019–6024
rupts GTP binding to GDH1. The open conformation of
21. Hutson, S. M. (1986) J. Biol. Chem. 261, 4420–4425
PMP-BCATm and GDH1 during catalysis facilitates the
22. MacDonald, M. J., Smith, A. D., 3rd, Hasan, N. M., Sabat, G., and Fahien,
channel formation between these two enzymes just as the
L. A. (2007) J. Biol. Chem. 282, 30596–30606
open conformation of unphosphorylated E1␣ promotes
binding to PLP-BCATm (5).
23. Pedersen, P. L., Greenawalt, J. W., Reynafarje, B., Hullihen, J., Decker,
G. L., Soper, J. W., and Bustamente, E. (1978) Methods Cell Biol. 20,
411–481
Why then does only the PMP form of BCATm interact with
GDH1? BCATm is a homodimeric protein containing two
active sites. The cofactor is at the bottom of the active site. The
PLP cofactor is bound to Lys-202 via a Schiff base. The PMP
form is held only by ionic interactions. The large conforma-
tional change of Lys-202 and rotation of PMP cofactor in the
active site make space for proper positioning of ␣-KG, which
only binds to the PMP form of the enzyme. The free amino
group of both PMP and the Lys-202 side chain remain in the
protonated state, which creates a net positive charge at the
active site of PMP-BCATm. The electrostatic nature of the res-
idues at the opening of the active site pocket and next to the
GTP-binding site, specifically Glu-439 and Asp-442, are nega-
tively charged. Thus ionic interactions between the active sites
of PMP-BCATm and GDH1 may facilitate binding and transfer
of ␣-KG from PMP-BCATm to GDH1.
24. Hutson, S. M. (1989) Ann. N.Y. Acad. Sci. 573, 230–239
25. Conway, M. E., Poole, L. B., and Hutson, S. M. (2004) Biochemistry 43,
7356–7364
26. Conway, M. E., Yennawar, N., Wallin, R., Poole, L. B., and Hutson, S. M.
(2002) Biochemistry 41, 9070–9078
27. Yennawar, N. H., Islam, M. M., Conway, M., Wallin, R., and Hutson, S. M.
(2006) J. Biol. Chem. 281, 39660–39671
28. Chuang, J. L., Davie, J. R., Wynn, R. M., and Chuang, D. T. (2000) Methods
Enzymol. 324, 192–200
29. Wynn, R. M., Davie, J. R., Song, J. L., Chuang, J. L., and Chuang, D. T.
(2000) Methods Enzymol. 324, 179–191
30. Zimmerman, L. J., Wernke, G. R., Caprioli, R. M., and Liebler, D. C. (2005)
J. Proteome Res. 4, 1672–1680
31. Fang, J., Hsu, B. Y., MacMullen, C. M., Poncz, M., Smith, T. J., and Stanley,
C. A. (2002) Biochem. J. 363, 81–87
32. Ma, B., Kumar, S., Tsai, C. J., and Nussinov, R. (1999) Protein Eng. 12,
713–720
33. Wynn, R. M., Kato, M., Machius, M., Chuang, J. L., Li, J., Tomchick, D. R.,
and Chuang, D. T. (2004) Structure 12, 2185–2196
In summary, we have found direct interaction between
BCAA metabolic enzymes in tissues that express BCATm. We 34. McCarthy, A. D., and Tipton, K. F. (1985) Biochem. J. 230, 95–99
35. Wallace, J. C., Jitrapakdee, S., and Chapman-Smith, A. (1998) Int. J. Bio-
have provided evidence that GDH1 can play a functional role in
chem. Cell Biol. 30, 1–5
BCAA metabolism. Further studies will be required to deter-
36. Harris, R. A., Powell, S. M., Paxton, R., Gillim, S. E., and Nagae, H. (1985)
mine function of other metabolon proteins.
Arch. Biochem. Biophys. 243, 542–555
37. Lynch, C. J., Halle, B., Fujii, H., Vary, T. C., Wallin, R., Damuni, Z., and
REFERENCES
Hutson, S. M. (2003) Am. J. Physiol. Endocrinol. Metab. 285, E854–E863
38. Johnson, D. T., Harris, R. A., French, S., Blair, P. V., You, J., Bemis, K. G.,
Wang, M., and Balaban, R. S. (2007) Am. J. Physiol. Cell Physiol. 292,
C689–C697
1. Srere, P. A. (2000) Trends Biochem. Sci. 25, 150–153
2. Srere, P. A. (1985) Trends Biochem. 10, 109–110
3. An, S., Kumar, R., Sheets, E. D., and Benkovic, S. J. (2008) Science 320,
103–106
39. Allen, A., Kwagh, J., Fang, J., Stanley, C. A., and Smith, T. J. (2004) Bio-
chemistry 43, 14431–14443
4. Campanella, M. E., Chu, H., and Low, P. S. (2005) Proc. Natl. Acad. Sci.
U.S.A. 102, 2402–2407
40. Smith, T. J., Schmidt, T., Fang, J., Wu, J., Siuzdak, G., and Stanley, C. A.
(2002) J. Mol. Biol. 318, 765–777
5. Islam, M. M., Wallin, R., Wynn, R. M., Conway, M., Fujii, H., Mobley, J. A.,
Chuang, D. T., and Hutson, S. M. (2007) J. Biol. Chem. 282, 11893–11903 41. Kawajiri, M., Okano, Y., Kuno, M., Tokuhara, D., Hase, Y., Inada, H.,
6. Hayashi, H., Inoue, K., Nagata, T., Kuramitsu, S., and Kagamiyama, H.
(1993) Biochemistry 32, 12229–12239
Tashiro, F., Miyazaki, J., and Yamano, T. (2006) Pediatr. Res. 59, 359–364
42. Choi, M. M., Huh, J. W., Yang, S. J., Cho, E. H., Choi, S. Y., and Cho, S. W.
(2005) FEBS Lett. 579, 4125–4130
7. Conway, M. E., and Hutson, S. M. (2000) Methods Enzymol. 324, 355–365
8. Yennawar, N. H., Conway, M. E., Yennawar, H. P., Farber, G. K., and
Hutson, S. M. (2002) Biochemistry 41, 11592–11601
43. Newsholme, P., Brennan, L., Rubi, B., and Maechler, P. (2005) Clin. Sci.
108, 185–194
9. Yennawar, N., Dunbar, J., Conway, M., Hutson, S., and Farber, G. (2001)
Acta Crystallogr. D Biol. Crystallogr. 57, 506–515
44. Yoon, H. Y., Cho, E. H., Yang, S. J., Lee, H. J., Huh, J. W., Choi, M. M., and
Cho, S. W. (2004) Biochimie 86, 261–267
10. Kagamiyama, H., and Hayashi, H. (2000) Methods Enzymol. 324, 45. Bayley, P. M., and O’Neill, K. T. (1980) Eur. J. Biochem. 112, 521–531
103–113
11. Hutson, S. M., Sweatt, A. J., and Lanoue, K. F. (2005) J. Nutr. 135, (Suppl. 47. Davoodi, J., Drown, P. M., Bledsoe, R. K., Wallin, R., Reinhart, G. D., and
6) 1557–1564 Hutson, S. M. (1998) J. Biol. Chem. 273, 4982–4989
46. Zeiri, L., and Reisler, E. (1979) Biopolymers 18, 2289–2301
12. Reed, L. J., Damuni, Z., and Merryfield, M. L. (1985) Curr. Top. Cell Regul. 48. Suryawan, A., Hawes, J. W., Harris, R. A., Shimomura, Y., Jenkins, A. E.,
27, 41–49
and Hutson, S. M. (1998) Am. J. Clin. Nutr. 68, 72–81
49. Gylfe, E. (1976) Acta Diabetol. 13, 20–24
13. Reed, L. J., and Hackert, M. L. (1990) J. Biol. Chem. 265, 8971–8974
14. Reed, L. J. (2001) J. Biol. Chem. 276, 38329–38336
50. Smith, T. J., Peterson, P. E., Schmidt, T., Fang, J., and Stanley, C. A. (2001)
J. Mol. Biol. 307, 707–720
15. Li, J., Wynn, R. M., Machius, M., Chuang, J. L., Karthikeyan, S., Tomchick,
D. R., and Chuang, D. T. (2004) J. Biol. Chem. 279, 32968–32978
16. Machius, M., Wynn, R. M., Chuang, J. L., Li, J., Kluger, R., Yu, D., Tom-
51. Macdonald, M. J., Hasan, N. M., and Longacre, M. J. (2008) Biochim.
Biophys. Acta 1780, 966–972
chick, D. R., Brautigam, C. A., and Chuang, D. T. (2006) Structure 14, 52. Sweatt, A. J., Wood, M., Suryawan, A., Wallin, R., Willingham, M. C., and
287–298
Hutson, S. M. (2004) Am. J. Physiol. Endocrinol. Metab. 286, E64–E76
JANUARY 1, 2010•VOLUME 285•NUMBER 1
JOURNAL OF BIOLOGICAL CHEMISTRY 275