ARTICLES
cooling to room temperature and replacing the H atmosphere with Ar, the reaction
26. Crooks, R. M., Mingqi, Z., Sun, L., Checkhik, V. & Yeung, L. K. Dendrimer-
encapsulated metal nanoparticles: synthesis, characterization, and applications
to catalysis. Acc. Chem. Res. 34, 181–190 (2001).
2
2
-Phenylbenzofuran (2) can be isolated in the following manner. The toluene
solution containing the product from the catalytic reaction was concentrated and
purified by flash chromatography (5% ethyl acetate/hexanes, Fisher ACS grade).
27. Rioux, R. M., Song, H., Hoefelmeyer, J. D., Yang, P. & Somorjai, G. A.
High-surface-area catalyst design: synthesis, characterization, and reaction
studies of platinum nanoparticles in mesoporous SBA-15 silica. J. Phys. Chem. B
109, 2192–2202 (2005).
Received 7 July 2009; accepted 26 October 2009;
published online 29 November 2009
2
2
3
3
3
8. Huang, W. et al. Dendrimer templated synthesis of one nanometer Rh and Pt
particles supported on mesoporous silica: catalytic activity for ethylene and
pyrrole hydrogenation. Nano Lett. 8, 2027–2034 (2008).
References
9. F u¨ rstner, A. & Davies, P. W. Heterocycles by PtCl -catalyzed intramolecular
1.
2.
3.
Zaera, F. & Joyner, R. W. (eds) The 13th International Symposium on Relations
Between Homogeneous and Heterogeneous Catalysis. Top. Catal. 48 (2008).
Dur a´ n Pach o´ n, L. & Rothenberg, G. Transition-metal nanoparticles: synthesis,
stability and the leaching issue. Appl. Organometal. Chem. 22, 288–299 (2008).
Astruc, D., Lu, F. & Ruiz Aranzaes, J. R. Nanoparticles as recyclable catalysts. The
frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int.
Ed. 44, 7852–7872 (2005).
2
carboalkoxylation or carboamination of alkynes. J. Am. Chem. Soc. 127,
15024–15025 (2005).
0. Knecht, M. R. et al. Synthesis and characterization of Pt dendrimer-encapsulated
nanoparticles: effect of the template on nanoparticle formation. Chem. Mater.
20, 5218–5228 (2008).
1. Ozturk, O. et al. Thermal decomposition of generation-4 polyamidoamine
dendrimer films: decomposition catalyzed by dendrimer-encapsulated Pt
particles. Langmuir 21, 3998–4006 (2005).
2. Ye, H., Scott, R. W. J. & Crooks, R. M. Synthesis, characterization, and surface
immobilization of platinum and palladium nanoparticles encapsulated
within amine-terminated poly(amidoamine) dendrimers. Langmuir 20,
4
.
.
de Jes u´ s, E. & Flores, J. C. Dendrimers: Solutions for catalyst separation and
recycling. Ind. Eng. Chem. Res. 47, 7968–7981 (2008).
5
Kuhn, J. N., Huang, W., Tsung, C.-K., Zhang, Y. & Somorjai, G. A. Structure
sensitivity of carbon-nitrogen ring opening: Impact of platinum particle size
from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over
monodisperse platinum nanoparticles loaded onto mesoporous silica. J. Am.
Chem. Soc. 130, 14026–14027 (2008).
2
915–2920 (2004).
3. Don a´ , E. et al. Halogen-induced corrosion of platinum. J. Am. Chem. Soc. 131,
827–2829 (2009).
4. Whitfield, S. R. & Sanford, M. S. Reactivity of Pd(II) complexes with
electrophilic chlorinating reagents: isolation of Pd(IV) products and
observation of C–Cl bond-forming reductive elimination. J. Am. Chem. Soc. 129,
3
3
2
6
.
Bhattacharjee, S., Dotzauer, D. M. & Bruening, M. L. Selectivity as a function of
nanoparticle size in the catalytic hydrogenation of unsaturated alcohols. J. Am.
Chem. Soc. 131, 3601–3610 (2009).
7
.
.
Lee, I., Delbecq, F., Morales, R., Albiter, M. A. & Zaera, F. Tuning selectivity in
catalysis by controlling particle shape. Nature Mater. 8, 132–138 (2009).
Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y. & Wang, Z. L. Synthesis of
tetrahexahedral platinum nanocrystals with high-index facets and high
electro-oxidation activity. Science 316, 732–735 (2007).
15142–15143 (2007).
3
3
3
3
5. Li, Y. & El-Sayed, M. A. The effect of stabilizers on the catalytic activity and
stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous
solution. J. Phys. Chem. B 105, 8938–8943 (2001).
8
6. Deutsch, D. S. et al. FT-IR investigation of the thermal decomposition of
poly(amidoamine) dendrimers and dendrimer-metal nanocomposites
supported on Al O and ZrO . J. Phys. Chem. C 111, 4246–4255 (2007).
9
.
Mahmoud, M. A., Tabor, C. E., El-Sayed, M. A., Ding, Y. & Wang, Z. L. A new
catalytically active colloidal platinum nanocatalyst: the multiarmed nanostar
single crystal. J. Am. Chem. Soc. 130, 4590–4591 (2008).
2
3
2
7. Lang, H., May, R. A., Iversen, B. L. & Chandler, B. D. Dendrimer-encapsulated
nanoparticle precursors to supported platinum catalysts. J. Am. Chem. Soc. 125,
1
1
1
0. Narayanan, R. & El-Sayed, M. A. Shape-dependent catalytic activity of platinum
nanoparticles in colloidal solution. Nano Lett. 4, 1343–1348 (2004).
1. Lee, H. et al. Morphological control of catalytically active platinum nanocrystals.
Angew. Chem. Int. Ed. 45, 7824–7828 (2006).
2. Rioux, R. M. et al. Monodisperse platinum nanoparticles of well-defined shape:
synthesis, characterization, catalytic properties and future prospects. Top. Catal.
14832–14836 (2003).
8. Cai, W., Zhong, H. & Zhang, L. Optical measurements of oxidation behavior of
silver nanometer particle within pores of silica host. J. Appl. Phys. 83,
1705–1710 (1998).
3
4
9. Brandes, E. A. (ed.) Smithells Metal Reference Book 6th edn (Butterworths, 1983).
0. Bond, G. C. Supported metal catalysts: Some unsolved problems. Chem. Soc. Rev.
3
9, 167–174 (2006).
1
1
1
1
1
1
1
2
2
3. Tsung, C.-K. et al. Sub-10 nm platinum nanocrystals with size and shape
control: catalytic study for ethylene and pyrrole hydrogenation. J. Am. Chem.
Soc. 131, 5816–5822 (2009).
4. Delbecq, F. & Zaera, F. Origin of the selectivity for trans-to-cis isomerization
in 2-butene on pt(111) single crystal surfaces. J. Am. Chem. Soc. 130,
20, 441–475 (1991).
4
4
4
4
1. LaLonde, R. L., Sherry, B. D., Kang, E. J. & Toste, F. D. Gold(I)-catalyzed
enantioselective intramolecular hydroamination of allenes. J. Am. Chem. Soc.
129, 2452–2453 (2007).
2. Barluenga, J., Trincado, M., Rubio, E. & Gonz a´ lez, J. M. IPy BF -promoted
1
4924–14925 (2008).
2
4
intramolecular addition of masked and unmasked anilines to alkynes: direct
assembly of 3-iodoindole cores. Angew. Chem. Int. Ed. 42, 2406–2409 (2003).
3. F u¨ rstner, A. & Mamane, V. Flexible synthesis of phenanthrenes by a
5. Scott, R. W. J., Wilson, O. M. & Crooks R. M. Synthesis, characterization, and
applications of dendrimer-encapsulated nanoparticles. J. Phys. Chem. B 109,
6
92–704 (2005).
PtCl -catalyzed cycloisomerization reaction. J. Org. Chem. 67,
6. Narayanan, R., Tabor, C. & El-Sayed, M. A. Can the observed changes in the size
or shape of a colloidal nanocatalyst reveal the nanocatalysis mechanism type:
homogeneous or heterogeneous? Top. Catal. 48, 60–74 (2008).
7. Bernechea, M., de Jes u´ s, E., L o´ pez-Mardomingo, C. & Terreros, P. Dendrimer-
encapsulated Pd nanoparticles versus palladium acetate as catalytic precursors in
the stille reaction in water. Inorg. Chem. 48, 4491–4496 (2007).
2
6264–6267 (2002).
4. Nakamura, I., Sato, Y. & Terada, M. Platinum-catalyzed dehydroalkoxylation-
cyclization cascade via N–O bond cleavage. J. Am. Chem. Soc. 131,
4198–4199 (2009).
4
4
5. Davies, I. W., Matty, L., Hughes, D. L. & Reider, P. J. Are heterogeneous catalysts
precursors to homogeneous catalysts? J. Am. Chem. Soc. 123, 10139–10140 (2001).
6. Dahan, A. & Portnoy, M. Pd catalysis on dendronized solid support: generation
effects and the influence of the backbone structure. J. Am. Chem. Soc. 129,
8. Zhang, X. & Corma, A. Supported gold(III) catalysts for highly
efficient three-component coupling reactions. Angew. Chem. Int. Ed. 47,
4
359–4361 (2008).
5860–5869 (2007).
9. Han, J., Liu, Y. & Guo, R. Facile synthesis of highly stable gold nanoparticles and
their unexpected excellent catalytic activity for Suzuki-Miyaura cross-coupling
reaction in water. J. Am. Chem. Soc. 131, 2060–2061 (2009).
0. Li, Y., Hong, X. M., Collard, D. M. & El-Sayed, M. A. Suzuki cross-coupling
reactions catalyzed by palladium nanoparticles in aqueous solution. Org. Lett. 2,
Acknowledgements
We acknowledge support from the Director, Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geological and Biosciences of the US DOE under
Contract DE-AC02-05CH11231.
2
385–2388 (2000).
1. Djakovitch, L., K o¨ hler, K. & de Vries, J. G. The role of palladium nanoparticles as
catalysts for carbon–carbon coupling reactions in Nanoparticles and Catalysis
Author contributions
(ed. Astruc, D.) Ch. 10, 303–348 (Wiley-VCH, 2008).
C.A.W, W.H., C.-K.T. and J.N.K. performed the experiments and synthesized materials,
substrates and catalysts. F.D.T. and G.A.S. supervised the research. All authors contributed
to the conception of the experiments, discussed the results and commented on
the manuscript.
2
2
2
2. Moreno-Maas, M. & Pleixats, R. Formation of carbon-carbon bonds under
catalysis by transition-metal nanoparticles. Acc. Chem. Res. 36, 638–643 (2003).
3. Durand, J., Teuma, E. & Gomez, M. An overview of palladium nanocatalysts:
surface and molecular reactivity. Eur. J. Inorg. Chem. 23, 3577–3586 (2008).
4. Astruc, D. Palladium nanoparticles as efficient green homogeneous and
heterogeneous carbon-carbon coupling precatalysts: a unifying view. Inorg.
Chem. 46, 1884–1894 (2007).
5. Thathagar, M. B., ten Elshof, J. E. & Rothenberg, G. Pd nanoclusters in
C–C coupling reactions: proof of leaching. Angew. Chem. Int. Ed. 45,
2
Additional information
2
886–2890 (2006).
2010 Macmillan Publishers Limited. All rights reserved.
41
©