Organometallics
Article
The diffusion coefficients of 13 gold complexes were measured in
deuterated dichloromethane solvent, and adamantane was used as an
internal reference to establish the calibration curves. Undeuterated
dichloromethane was also employed to test the possibility to use
another internal reference, using ECCs calculated with adamantane.
The fixed diffusion coefficients of adamantane and dichloromethane
(Dref, fix) were determined by averaging the values obtained in 13
separate experiments.
Molecular Geometry. The geometries of the gold complexes (a,
b, c, d, e, g, i, and l) were obtained from the CCDC X-ray structure
database when available. All other structures for complexes f, h, j, k,
and m were optimized using the Gaussian 09 software package at the
B3LYP level of density functional theory (DFT). The gold and the
bromine atoms were described by the LANL2DZ ECP basis set. All
other atoms were described by the 6-31G(d,p) basis set. (See the SI
for details.)
(8) Fu
̈
rstner, A. From Understanding to Prediction: Gold- and
Platinum-Based π-Acid Catalysis for Target Oriented Synthesis. Acc.
Chem. Res. 2014, 47, 925−938.
(9) Zhang, Y.; Luo, T.; Yang, Z. Strategic innovation in the total
synthesis of complex natural products using gold catalysis. Nat. Prod.
Rep. 2014, 31, 489−503.
(10) Dorel, R.; Echavarren, A. M. Gold(I)-Catalyzed Activation of
Alkynes for the Construction of Molecular Complexity. Chem. Rev.
2015, 115, 9028−9072.
(11) Joost, M.; Amgoune, A.; Bourissou, D. Reactivity of Gold
Complexes towards Elementary Organometallic Reactions. Angew.
Chem., Int. Ed. 2015, 54, 15022−15045.
(12) Pflasterer, D.; Hashmi, A. S. K. Gold catalysis in total synthesis
- recent achievements. Chem. Soc. Rev. 2016, 45, 1331−1367.
(13) Zi, W.; Dean Toste, F. Recent advances in enantioselective
gold catalysis. Chem. Soc. Rev. 2016, 45, 4567−4589.
́
(14) Miro, J.; del Pozo, C. Fluorine and Gold: A Fruitful
ASSOCIATED CONTENT
* Supporting Information
■
Partnership. Chem. Rev. 2016, 116, 11924−11966.
S
(15) Wei, Y.; Shi, M. Divergent Synthesis of Carbo- and
Heterocycles via Gold-Catalyzed Reactions. ACS Catal. 2016, 6,
2515−2524.
The Supporting Information is available free of charge on the
(16) Stathakis, C. I.; Gkizis, P. L.; Zografos, A. L. Metal-catalyzed
cycloisomerization as a powerful tool in the synthesis of complex
sesquiterpenoids. Nat. Prod. Rep. 2016, 33, 1093−1117.
(17) Li, Y.; Li, W.; Zhang, J. Frontispiece: Gold-Catalyzed
Enantioselective Annulations. Chem. - Eur. J. 2017, 23, 467.
(18) Johnson, C. S. Diffusion ordered nuclear magnetic resonance
spectroscopy: principles and applications. Prog. Nucl. Magn. Reson.
Spectrosc. 1999, 34, 203−256.
Calculation of the molecular van der Waals density
MDW, 3D geometries and chemical structures of the
model compounds used for ECCs, influence of
concentration, 1H 1D NMR spectra of compounds
LAuX, and abbreviations (PDF)
Coordinates of the computed structures (XYZ)
(19) Macchioni, A.; Ciancaleoni, G.; Zuccaccia, C.; Zuccaccia, D.
Determining accurate molecular sizes in solution through NMR
diffusion spectroscopy. Chem. Soc. Rev. 2008, 37, 479−489.
AUTHOR INFORMATION
Corresponding Author
■
́
(20) Pregosin, P. S.; Kumar, P. G. A.; Fernandez, I. Pulsed Gradient
Spin−Echo (PGSE) Diffusion and 1H,19F Heteronuclear Over-
hauser Spectroscopy (HOESY) NMR Methods in Inorganic and
Organometallic Chemistry: Something Old and Something New.
Chem. Rev. 2005, 105, 2977−2998.
(21) Edward, J. T. Molecular volumes and the Stokes-Einstein
equation. J. Chem. Educ. 1970, 47, 261−270.
(22) Einstein, A. Uber die von der molekularkinetischen Theorie
der Warme geforderte Bewegung von in ruhenden Flussigkeiten
suspendierten Teilchen. Ann. Phys. (Berlin, Ger.) 1905, 322, 549−
560.
(23) Kumar, P. G. A.; Pregosin, P. S.; Schmid, T. M.; Consiglio, G.
PGSE diffusion, 1H−19F HOESY and NMR studies on several
[Rh(1,5-COD)(Biphemp)]X complexes: detecting positional anion
effects. Magn. Reson. Chem. 2004, 42, 795−800.
(24) Kumar, P. G. A. PGSE Diffusion NMRAn Emerging
Technique for Inorganic/Organometallic Chemists. Aust. J. Chem.
2006, 59, 78−78.
(25) Pregosin, P. S. Ion pairing using PGSE diffusion methods.
Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49, 261−288.
(26) Abadie, M. A.; Trivelli, X.; Duhal, F. M. N.; Kouach, M.;
Linden, B.; Vandewalle, E. G. M.; Capet, F.; Roussel, P.; Rosal, I. D.;
Maron, L.; Agbossou-Niedercorn, F.; Michon, C. Gold(I)-Catalysed
Asymmetric Hydroamination of Alkenes: A Silver- and Solvent-
Dependent Enantiodivergent Reaction. Chem. - Eur. J. 2017, 23,
10777−10788.
(27) Rocchigiani, L.; Jia, M.; Bandini, M.; Macchioni, A. Assessing
the Role of Counterion in Gold-Catalyzed Dearomatization of
Indoles with Allenamides by NMR Studies. ACS Catal. 2015, 5,
3911−3915.
(28) Evans, R.; Dal Poggetto, G.; Nilsson, M.; Morris, G. A.
Improving the Interpretation of Small Molecule Diffusion Coef-
ficients. Anal. Chem. 2018, 90, 3987−3994.
(29) Evans, R.; Deng, Z.; Rogerson, A. K.; McLachlan, A. S.;
Richards, J. J.; Nilsson, M.; Morris, G. A. Quantitative Interpretation
of Diffusion-Ordered NMR Spectra: Can We Rationalize Small
ORCID
̈
Notes
̈
̈
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the LabEx Charmmmat
(ANR-11-LABX-0039) and the Agence Nationale de la
Recherche (ANR-16-CE29-0012). The authors thank Arnaud
Voituriez for providing some of the gold complexes.
REFERENCES
■
(1) Hashmi, A. S. K. Gold-Catalyzed Organic Reactions. Chem. Rev.
2007, 107, 3180−3211.
(2) Li, Z.; Brouwer, C.; He, C. Gold-Catalyzed Organic
Transformations. Chem. Rev. 2008, 108, 3239−3265.
́
́
̃
ez, E.; Echavarren, A. M. Gold-Catalyzed Cyclo-
(3) Jimenez-Nun
isomerizations of Enynes: A Mechanistic Perspective. Chem. Rev.
2008, 108, 3326−3350.
(4) Furstner, A. Gold and platinum catalysis-a convenient tool for
̈
generating molecular complexity. Chem. Soc. Rev. 2009, 38, 3208−
3221.
(5) Huang, H.; Zhou, Y.; Liu, H. Recent advances in the gold-
catalyzed additions to C−C multiple bonds. Beilstein J. Org. Chem.
2011, 7, 897−936.
(6) Wang, Y.-M.; Lackner, A. D.; Toste, F. D. Development of
Catalysts and Ligands for Enantioselective Gold Catalysis. Acc. Chem.
Res. 2014, 47, 889−901.
(7) Obradors, C.; Echavarren, A. M. Gold-Catalyzed Rearrange-
ments and Beyond. Acc. Chem. Res. 2014, 47, 902−912.
F
Organometallics XXXX, XXX, XXX−XXX