Biomacromolecules
Article
(8) Lu, P. Y.; Xie, F.; Woodle, M. C. In vivo application of RNA
interference: from functional genomics to therapeutics. Adv. Genet.
2005, 54, 117−42.
Notes
The authors declare no competing financial interest.
(9) Hanahan, D.; Folkman, J. Patterns and emerging mechanisms of
the angiogenic switch during tumorigenesis. Cell 1996, 86 (3), 353−
64.
ACKNOWLEDGMENTS
■
This study was supported by the Ministry of Science and
Technology (MOST 104-2628-B-007-001-MY3, 105-2628-E-
007-007-MY3 for Y.C.; MOST 105-2633-M-007-002, 106-
2633-M-007-004 for S.K.W.) and by the National Institute for
Health Research (NHRI-EX107-10609BC). This work was
also supported by the Frontier Research Center on
Fundamental and Applied Sceinces of Matters from The
Featured Areas Research Center Program within the framework
of the Higher Education Sprout Project by Ministry of
Education (MOE) in Taiwan.
(10) Folkman, J.; D’Amore, P. A. Blood vessel formation: what is its
molecular basis? Cell 1996, 87 (7), 1153−5.
(11) Gavrilov, K.; Saltzman, W. M. Therapeutic siRNA: principles,
challenges, and strategies. Yale J. Biol. Med. 2012, 85 (2), 187−200.
(12) Seth, S.; Johns, R.; Templin, M. V. Delivery and biodistribution
of siRNA for cancer therapy: challenges and future prospects. Ther.
Delivery 2012, 3 (2), 245−61.
(13) Severi, T.; van Malenstein, H.; Verslype, C.; van Pelt, J. F.
Tumor initiation and progression in hepatocellular carcinoma: risk
factors, classification, and therapeutic targets. Acta Pharmacol. Sin.
2010, 31 (11), 1409−20.
(14) Oh, Y. K.; Park, T. G. siRNA delivery systems for cancer
treatment. Adv. Drug Delivery Rev. 2009, 61 (10), 850−62.
(15) Li, J.; Chen, Y. C.; Tseng, Y. C.; Mozumdar, S.; Huang, L.
Biodegradable calcium phosphate nanoparticle with lipid coating for
systemic siRNA delivery. J. Controlled Release 2010, 142 (3), 416−21.
(16) Li, J.; Yang, Y.; Huang, L. Calcium phosphate nanoparticles with
an asymmetric lipid bilayer coating for siRNA delivery to the tumor. J.
Controlled Release 2012, 158 (1), 108−14.
(17) Liu, C. H.; Chern, G. J.; Hsu, F. F.; Huang, K. W.; Sung, Y. C.;
Huang, H. C.; Qiu, J. T.; Wang, S. K.; Lin, C. C.; Wu, C. H.; Wu, H.
C.; Liu, J. Y.; Chen, Y. A multifunctional nanocarrier for efficient
TRAIL-based gene therapy against hepatocellular carcinoma with
desmoplasia in mice. Hepatology 2018, 67 (3), 899−913.
(18) Kawakami, S.; Hashida, M. Glycosylation-mediated targeting of
carriers. J. Controlled Release 2014, 190, 542−55.
(19) D’Souza, A. A.; Devarajan, P. V. Asialoglycoprotein receptor
mediated hepatocyte targeting - strategies and applications. J.
Controlled Release 2015, 203, 126−39.
(20) Li, M.; Zhang, W.; Wang, B.; Gao, Y.; Song, Z.; Zheng, Q. C.
Ligand-based targeted therapy: a novel strategy for hepatocellular
carcinoma. Int. J. Nanomed. 2016, 11, 5645−5669.
(21) Oh, H. R.; Jo, H. Y.; Park, J. S.; Kim, D. E.; Cho, J. Y.; Kim, P.
H.; Kim, K. S. Galactosylated Liposomes for Targeted Co-Delivery of
Doxorubicin/Vimentin siRNA to Hepatocellular Carcinoma. Nano-
materials 2016, 6 (8), 141.
(22) Renz, M.; Daniels, B. R.; Vamosi, G.; Arias, I. M.; Lippincott-
Schwartz, J. Plasticity of the asialoglycoprotein receptor deciphered by
ensemble FRET imaging and single-molecule counting PALM
imaging. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (44), E2989−97.
(23) Tanabe, T.; Pricer, W. E., Jr.; Ashwell, G. Subcellular membrane
topology and turnover of a rat hepatic binding protein specific for
asialoglycoproteins. J. Biol. Chem. 1979, 254 (4), 1038−43.
(24) Kolatkar, A. R.; Leung, A. K.; Isecke, R.; Brossmer, R.;
Drickamer, K.; Weis, W. I. Mechanism of N-acetylgalactosamine
binding to a C-type animal lectin carbohydrate-recognition domain. J.
Biol. Chem. 1998, 273 (31), 19502−8.
(25) Ruiz, N. I.; Drickamer, K. Differential ligand binding by two
subunits of the rat liver asialoglycoprotein receptor. Glycobiology 1996,
6 (5), 551−9.
(26) Stokmaier, D.; Khorev, O.; Cutting, B.; Born, R.; Ricklin, D.;
Ernst, T. O.; Boni, F.; Schwingruber, K.; Gentner, M.; Wittwer, M.;
Spreafico, M.; Vedani, A.; Rabbani, S.; Schwardt, O.; Ernst, B. Design,
synthesis and evaluation of monovalent ligands for the asialoglyco-
protein receptor (ASGP-R). Bioorg. Med. Chem. 2009, 17 (20), 7254−
64.
ABBREVIATIONS
■
ASGPR: asialoglycoprotein receptor; BSA: bovine serum
albumin; CaP: calcium phosphate; CuAAC: Cu(I)-catalyzed
alkyne−azide cycloaddition; DAPI: 4′,6-diamidino-2-phenyl-
indole; DMEM: Dulbecco’s modified Eagle’s medium; DMSO:
dimethyl sulfoxide; DLS: dynamic light scattering; DOPA: 1,2-
dioleoyl-sn-glycero-3-phosphate; DOTAP: 1,2-dioleoyl-3-trime-
thylammonium-propane; DSPE-PEG: 1,2-distearoyl-sn-glycero-
3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000];
azido-DSPE-PEG: 1,2-distearoyl-sn-glycero-3-phosphoethanol-
amine-N-[azido(polyethylene glycol)-2000]; ECL: enhanced
chemiluminescence; EtOH: ethanol; FAM: fluorescein amidite;
FBS: fetal bovine serum; GAPDH: glyceraldehyde 3-phosphate
dehydrogenase; Gal: galactose; GL: glycolipids; HCC:
hepatocellular carcinoma; HRP: horseradish peroxidase; I.V.:
intravenous; LCP: lipid/calcium/phosphate; MVD: mean
vessel density; NP: nanoparticle; GalNAc: N-acetylgalactos-
amine; PBS: phosphate-buffered saline; PBST: phosphate-
buffered saline with Tween 20; PDI: polydispersity index; PEG:
polyethylene glycol; PTC: phase transfer catalytic; PVDF:
polyvinylidene fluoride; RT-qPCR: reverse transcription
quantitative polymerase chain reaction; SDS: sodium dodecyl
sulfate; SEM: standard error of the mean; siRNA: small
interfering ribonucleic acid; TKI: tyrosine kinase inhibitor;
TEM: transmission electron microscopy; VEGF: vascular
endothelial growth factor
REFERENCES
■
(1) Wong, M. C.; Jiang, J. Y.; Goggins, W. B.; Liang, M.; Fang, Y.;
Fung, F. D.; Leung, C.; Wang, H. H.; Wong, G. L.; Wong, V. W.;
Chan, H. L. International incidence and mortality trends of liver
cancer: a global profile. Sci. Rep. 2017, 7, 45846.
(2) Yang, J. D.; Roberts, L. R. Hepatocellular carcinoma: A global
view. Nat. Rev. Gastroenterol. Hepatol. 2010, 7 (8), 448−58.
(3) Kishi, Y.; Hasegawa, K.; Sugawara, Y.; Kokudo, N. Hepatocellular
carcinoma: current management and future development-improved
outcomes with surgical resection. Int. J. Hepatol. 2011, 2011, 728103.
(4) Eun, H. S.; Kim, M. J.; Kim, H. J.; Ko, K. H.; Moon, H. S.; Lee, E.
S.; Kim, S. H.; Lee, H. Y.; Lee, B. S. The retrospective cohort study for
survival rate in patients with advanced hepatocellular carcinoma
receiving radiotherapy or palliative care. Korean J. Hepatol 2011, 17
(3), 189−98.
(27) Mamidyala, S. K.; Dutta, S.; Chrunyk, B. A.; Preville, C.; Wang,
H.; Withka, J. M.; McColl, A.; Subashi, T. A.; Hawrylik, S. J.; Griffor,
M. C.; Kim, S.; Pfefferkorn, J. A.; Price, D. A.; Menhaji-Klotz, E.;
Mascitti, V.; Finn, M. G. Glycomimetic ligands for the human
asialoglycoprotein receptor. J. Am. Chem. Soc. 2012, 134 (4), 1978−81.
(28) Sanhueza, C. A.; Baksh, M. M.; Thuma, B.; Roy, M. D.; Dutta,
S.; Preville, C.; Chrunyk, B. A.; Beaumont, K.; Dullea, R.; Ammirati,
(5) Burak, K. W. Prognosis in the early stages of hepatocellular
carcinoma: Predicting outcomes and properly selecting patients for
curative options. Can. J. Gastroenterol 2011, 25 (9), 482−4.
(6) Zamore, P. D.; Haley, B. Ribo-gnome: the big world of small
RNAs. Science 2005, 309 (5740), 1519−24.
(7) Sontheimer, E. J.; Carthew, R. W. Silence from within:
endogenous siRNAs and miRNAs. Cell 2005, 122 (1), 9−12.
I
Biomacromolecules XXXX, XXX, XXX−XXX