10.1002/cctc.201901395
ChemCatChem
FULL PAPER
[1]
a) K. Uoto, S. Ohsuki, H. Takenoshita, T. Ishiyama, S. Iimura, Y. Hirota,
I. Mitsui, H. Terasawa, T. Soga, Chem. Pharm. Bull. 1997, 45,
1793−1804; b) K. Nakayama, H. C. Kawato, H. Inagaki, R. Nakajima, A.
Kitamura, K. Someya, T. Ohta, Org. Lett. 2000, 2, 977−980; c) A. M.
Silva, R. E. Cachau, H. L. Sham, J. W. Erickson, J. Mol. Biol. 1996, 255,
321−340.
[2]
[3]
G. Pattison, Eur. J. Org. Chem. 2018, 27, 3520−3540.
a) B. Chahinez, S.-B. Salima, T. D. G. Elisabeth, A. Sonia, G. Frederic,
D. Aicha, J. Colloid. Interf. Sci. 2013, 408, 125−131; (b) J. Greiner, A.
Milius, J.-G. Riess, J. Fluor. Chem. 1992, 56, 285−293.
Scheme 4. A proposed reaction mechanism
[4]
[5]
a) F.-H Xiao, F.-H Wu, Y.-J Shen, L.-F Zhou, J. Fluor. Chem. 2005, 126,
63−67; b) G. Rong, R. Keese, Tetrahedron Lett. 1990, 31, 5615−5616.
a) Z.-Y. Yang, A.-J. Tang, SynLett 2019, 30, 1061−1066; b) D.-Q
Zheng, S. Armido, Org. Lett. 2019, 21, 325−329; c) T.-X. Zhang, P.-F
Wang, Z.-R. Gao, Y. An, C. He, C.-Y. Duan, RSC. Adv.
2018, 8, 32610−32620.
Conclusions
In summary, we have developed an operationally simple and
higly efficient Ni-catalyzed radical difunctionaliztion reaction of
alkenes and 2-iodo-2,2-difluoroketones. The reaction is not only
good for the synthesis of 1,2-difluroalkylated and iodinated
products, it also can be used for the construction of
difluoroalkylated tetrahydrofuran, dihydrobenzofuran, and
indolinone compounds through a radical addition and cyclization
process. Preliminary mechanistic investigation demonstrated the
possibility of formation of RCOCF2 radical by Ni-catalysis.
Further synthetic applications of the Ni-catalyzed radical reaction
for the construction of diversity difluorinated compounds are
currently underway in our laboratory and will be reported in due
course.
[6]
[7]
a) X. Zhao, H.-Y. Tu, L. Guo, S.-Q Zhu, F.-L. Qing, L.-L. Chu, Nat.
Commun. 2018, 9, 3488−3494; b) X.-F Xia, J.-P. Yu, D.-W. Wang, Adv.
Synth. Catal. 2018, 360, 562−567; c) Z.-D. Li, G.-D. Andres, N. Cristina,
J. Am. Chem. Soc. 2015, 137, 11610−11613; d) J.-Y. Wang, X. Zhang,
Y. Bao, Y.-M. Xu, X.-F. Cheng, X.-S. Wang, Org. Biomol. Chem. 2014,
12, 5582−5585.
a) J.-S. Lin, F.-L. Wang, X.-Y. Dong, W.-W. He, Y. Yuan, S. Chen , X.-Y.
Liu, Nat. Commun. 2017, 8, 14841-14852; b) J.-S. Lin, T. -T. Li, J.-R.
Liu, G.-Y. Jiao, Q.-S. Gu, J.-T. Cheng, Y.-L. Guo, X. Hong, X.-Y. Liu, J.
Am. Chem. Soc. 2019, 141, 1074-1083; For reviews, see c) L.
Agostinho; L. Christian; L. Andre, Adv. Synth. Catal. 2019, 361,
1500−1537; d) F. Zhang, Y.-L Xiao, X.-G Zhang, Accounts. Chem. Res.
2018, 51, 2264−2278; e) C. Zhang, Adv. Synth. Catal. 2017, 359,
372−383; f) X.-L. Pan, H.-G. Xia, J. Wu, Org. Chem. Front. 2016, 3,
1163−1185.
[8]
a) Z.-M. Qiu, D.-J. Burton, J. Org. Chem. 1995, 60, 6798−6805; b)Z.-M.
Qiu, D.-J. Burton, J. Tetrahedron Lett. 1994, 35, 1813−1816; c)Z.-M.
H.-C Liu, F.-C. Wu, S.-J. Chen, J Chin Chem Soc-Taip. 1994, 41,
103−108; e) K.-C. Kwak, W.-Y. Lee, Z.-S Quan, Y.-H. Lee, Y.-G. Yun,
G.-B. Kwak, H.-T. Chung, T.-O. Kwon, K.-Y. Chai, B. Kor. Chem. Soc.
2005, 26, 97−102.
Experimental Section
General catalytic reaction procedures: An oven-dried Schlenk
tube was charged with Ni(acac)2 (0.05 mmol), 1,10-phen (0.06
mmol) and K2CO3 or TMEDA (2 mmol). The tube was evacuated
and backfilled with nitrogen (repeated three times). Then a 2-
iodo-2,2-difluoroacetophenone 1 (1.0 mmol) and an alkene 2
(1.2 mmol) in CPME (4.0 mL) were added into the tube. The
reaction mixture was stirring at 100 °C for 5-8 h. After
completion of the reaction as indicated by TLC, the reaction was
quenched with an appropriate amount of water, and the reaction
mixture was extracted with EtOAc (3 x 15 mL). The combined
organic layers were washed with saturated brine, dried over
Na2SO4, and concentrated in vacuum to give the crude product
3. It was purified by silica-gel column chromatography (100:1
petroleum ether/EtOAc) to afford the desired product .
[9]
a) J.-Q Liang, G.-Z Huang; P. Peng, T.-Y Zhang, J.-J Wu, F.-H Wu, Adv.
Synth. Catal. 2018, 360, 2221−2227; b) D.-F Wang, J.-J Wu, J.-W
Huang, J.-Q Liang, P. Peng, H. Chen, Heng, F.-H. Wu, Tetrahedron.
2017, 73, 3478−3484.
[10] P. Peng, J.-J. Wu, Liang, J.-Q Liang, T.-Y Zhang, J.-W Huang, F.-H.
Wu, RSC. Adv. 2017, 7, 56034−56037.
[11] For reviews, see a) M.-R. Netherton, G.-C. Fu, Adv. Synth. Catal. 2004,
346, 1525−1532; b) Y. Tamaru, Modern Organonickel Chemistry;
Wiley-VCH: Weinheim, 2005; c) B.-M. Rosen, K.-W. Quasdorf, D.-A.
Wilson, N. Zhang, A.-M. Resmerita, N.-K. Garg, V. Percec, Chem. Rev.
2011, 111, 1346−1416; d) S.-Z. Tasker, E.-A Standley, T.-F. Jamison,
Nature. 2014, 509, 299−309; e) B. Su, Z.-C. Cao, Z.-J. Shi, Acc. Chem.
Res. 2015, 48, 886−896; f) E.-A. Standley, S.-Z. Tasker, K.-L. Jensen,
T.-F. Jamison, Acc. Chem. Res. 2015, 48, 1503−1514; g) D.-J. Weix,
Acc. Chem. Res. 2015, 48, 1767−1775; h) G.-C. Fu, ACS Cent. Sci.
2017, 3, 692−700.
[12] a) H. Chen, J.-X. Wang, J.-J. Wu, Y.-J. Kuang, F.-H. Wu, J. Fluor.
Chem. 2017, 200, 41−46; b) J.-X Wang, J.-J. Wu, H. Chen, S.-W.
Zhang, F.-H. Wu, Chinese. Chem. Lett. 2015, 26, 1381−1384.
Acknowledgements
[13] a) Z.-X Ruan, Z.-X Huang, Z.-N Xu, G.-Q. Mo, X. Tian, X.-Y. Yu, and L.
Ackerman, Org. Lett. 2019, 21, 1237−1240; b) A.-K. Gupta, M.
Bharadwaj, A. Kumar, R. Mehrotra, Top. Curr. Chem. 2017, 375, 3−27;
c) N. Ye, H. Chen, E.-A Wold, P.-Y. Shi, J. Zhou, ACS. Infect. Dis. 2016,
2, 382−392. (d) J. Bergman, Adv. Heterocycl. Chem. 2015, 117, 1−81.
[14] J.-H. Liao, L.-F. Fan, W. Guo, Z.-M Zhang, J.-W. Li, C.-L Zhu, Y.-W Ren,
W.-Q Wu, and H.-F Jiang, Org. Lett. 2017, 19, 1008−1011.
We are grateful for financial supports from the National Natural
Science Foundation of China (Nos. 21672151, 21602136).
Keywords: Ni-catalyst • 2-iodo-2,2-difluoroketones • alkenes •
radical • difunctionalization
This article is protected by copyright. All rights reserved.