nature of the dehydrodiferulates in vivo and not only in alkaline
hydrolysates.
3 K. S. Tan, T. Hoson, Y. Masuda and S. Kamisaka, Plant Cell Physiol.,
1992, 33, 103–108.
4 S. Kamisaka, S. Takeda, K. Takahashi and K. Shibata, Physiol. Plant.,
1990, 78, 1–7.
5 I. Zarra, M. Sanchez, E. Queijeiro, M. J. Pena and G. Revilla, J. Sci.
Food Agric., 1999, 79, 416–420.
6 R. D. Hatfield, J. Ralph and J. H. Grabber, Crop Sci., 1999, 39, 27–
37.
7 K. W. Waldron, A. C. Smith, A. J. Parr, A. Ng and M. L. Parker, Trends
Food Sci. Technol., 1997, 8, 213–221.
8 A. J. Parr, K. W. Waldron, A. Ng and M. L. Parker, J. Sci. Food Agric.,
1996, 71, 501–507.
9 C. C. Parker, M. L. Parker, A. C. Smith and K. W. Waldron, J. Agric.
Food Chem., 2003, 51, 2034–2039.
10 H. U. Markwalder and H. Neukom, Phytochemistry, 1976, 15, 836–837.
11 A. Oosterveld, J. H. Grabber, G. Beldman, J. Ralph and A. G. J.
Voragen, Carbohydr. Res., 1997, 300, 179–181.
12 A. Ng, R. N. Greenshields and K. W. Waldron, Carbohydr. Res., 1997,
303, 459–462.
13 M. Bunzel, J. Ralph, J. M. Marita, R. D. Hatfield and H. Steinhart,
J. Sci. Food Agric., 2001, 81, 653–660.
14 L. R. Ferguson and P. J. Harris, Lancet, 2003, 361, 1487–1488.
15 L. R. Ferguson, I. F. Lim, A. E. Pearson, J. Ralph and P. J. Harris,
Mutat. Res., 2003, 542, 49–58.
16 M. F. Andreasen, P. A. Kroon, G. Williamson and M. T. Garcia-
Conesa, Free Radical Biol. Med., 2001, 31, 304–314.
17 E. Allerdings, J. Ralph, H. Steinhart and M. Bunzel, Phytochemistry,
2006, DOI: 10.1016/j.phytochem.2006.04.018.
18 L. Saulnier and J.-F. Thibault, J. Sci. Food Agric., 1999, 79, 396–402.
19 T. Ishii, Plant Sci., 1997, 127, 111–127.
As with any chemical reaction that produces multiple products,
the ratio of products is dependent upon reaction conditions. Some
hint as to what might be driving post-coupling reactions in the cell
wall comes from more detailed recent unpublished examinations
of ferulate coupling. [Partitioning among all the various coupling
modes is also condition-dependent, but it is reasonable to assume
that once radical coupling regiochemistry has been determined
(e.g. as 8–8, for example) it is the various rearomatization
possibilities that control the final product distribution]. Lu (2005,
unpublished) has found that low pH favors the tetrahydrofuran
product. This is a mechanistically reasonable observation. The
intermediate quinone methide 3C, produced directly following the
8–8-coupling step, will more readily add water nucleophilically
at low pH resulting in tetrahydrofuran 5C2; such addition is
protonation-dependent. At high pH, the elimination reactions
producing 5C1 are more likely.
Cursory mass spec analysis indicates no other isomers of 5C2 at
a significant level (trace amounts of one more isomer are possible
from the selected ion mode in the GC-MS) although the synthesis
and coupling reactions with methyl ferulate appear to produce
other isomers. Determining whether other isomers of the ester
4C2 produce the same acid isomer 5C2 following saponification
is beyond the current study, which sought to identify the product
liberated from natural sources.
20 M. Bunzel, E. Allerdings, V. Sinwell, J. Ralph and H. Steinhart, Eur.
Food Res. Technol., 2002, 214, 482–488.
21 R. D. Hartley, W. H. Morrison, III, F. Balza and G. H. N. Towers,
Phytochemistry, 1990, 29, 3699–3703.
22 R. D. Hartley, W. H. Morrison, III, D. S. Himmelsbach and W. S.
Borneman, Phytochemistry, 1990, 29, 3705–3709.
23 M. Bunzel, J. Ralph, H. Kim, F. Lu, S. A. Ralph, J. M. Marita, R. D.
Hatfield and H. Steinhart, J. Agric. Food Chem., 2003, 51, 1427–1434.
24 J. Ralph, S. Quideau, J. H. Grabber and R. D. Hatfield, J. Chem. Soc.,
Perkin Trans. 1, 1994, 3485–3498.
25 T. Geissmann and H. Neukom, Helv. Chim. Acta, 1971, 54, 1108–1112.
26 C. Funk, J. Ralph, H. Steinhart and M. Bunzel, Phytochemistry, 2005,
66, 363–371.
27 M. Bunzel, J. Ralph, C. Funk and H. Steinhart, Eur. Food Res. Technol.,
2003, 217, 128–133.
28 X. Rouau, V. Cheynier, A. Surget, D. Gloux, C. Barron, E. Meuded, J.
Louis-Montero and M. Criton, Phytochemistry, 2003, 63, 899–903.
29 M. Bunzel, J. Ralph, C. Funk and H. Steinhart, Tetrahedron Lett., 2005,
46, 5845–5850.
30 K. W. Waldron, A. Ng, M. L. Parker and A. J. Parr, J. Sci. Food Agric.,
1997, 74, 221–228.
31 J. H. Grabber, J. Ralph and R. D. Hatfield, J. Agric. Food Chem., 2000,
48, 6106–6113.
32 T. Ishii, Carbohydr. Res., 1991, 219, 15–22.
33 E. Allerdings, J. Ralph, P. Schatz, D. Gniechwitz, H. Steinhart and M.
Bunzel, Phytochemistry, 2005, 66, 113–124.
34 L. Saulnier, M. J. Crepeau, M. Lahaye, J. F. Thibault, M. T. Garcia-
Conesa, P. A. Kroon and G. Williamson, Carbohydr. Res., 1999, 320,
82–92.
35 J. Ralph, M. Bunzel, J. M. Marita, R. D. Hatfield, F. Lu, H. Kim,
J. H. Grabber, S. A. Ralph, G. Jimenez-Monteon and H. Steinhart,
Polyphe´nols Actual., 2000, 13–17.
36 F. Z. Yang, M. K. Trost and W. E. Fristad, Tetrahedron Lett., 1987, 28,
1493–1496.
Conclusions
Alkaline hydrolysates of cereal grain and grass walls contain
a previously unauthenticated component derived from ferulate.
Strictly DFA 5C2 is not a true dehydrodimer since an additional
oxygen (from water) is incorporated. Its higher molecular mass
is responsible for its being missed as a dimeric ferulate product
previously. It is still formed via radical coupling, but the post-
coupling steps are different from those in the previously identified
DFAs.2 DFA 5C2 is a substantial component that should also
be quantified as resulting from 8–8-dehydrodimerization. Only
one of the six potential diastereomers of 5C2, the cis–trans–trans-
isomer, was detected among the products from saponified plant
cell walls. The finding of this 8–8-tetrahydrofuran DFA 5C2 along
with the previously identified 5C1 and 5C3 implicates at least three
8–8-coupling products of ferulate in the cell walls of these plants
and suggests that cell wall cross-linking may occur under acidic
conditions.
Acknowledgements
We thank Carola Funk and Jane Marita for experimental support.
We gratefully acknowledge partial funding through the USDA-
CSREES National Research Initiatives (Food Characterization
#2003-35503-13820).
37 H. S. Gill and J. A. Landgrebe, J. Org. Chem., 1983, 48, 1051–1055.
38 F. Garzino, A. Meou and P. Brun, Tetrahedron Lett., 2000, 41, 9803–
9807.
39 F. Garzino, A. Meou and P. Brun, Eur. J. Org. Chem., 2003, 1410–1414.
40 F. Garzino, A. Meou and P. Brun, Synthesis, 2003, 598–602.
41 F. Garzino, A. Meou and P. Brun, Tetrahedron Lett., 2002, 43, 5049–
5051.
References
1 M. Piber and P. Koehler, J. Agric. Food Chem., 2005, 53, 5276–5284.
2 J. Ralph, M. Bunzel, J. M. Marita, R. D. Hatfield, F. Lu, H. Kim,
P. F. Schatz, J. H. Grabber and H. Steinhart, Phytochem. Rev., 2004, 3,
79–96.
42 K. W. Waldron, A. J. Parr, A. Ng and J. Ralph, Phytochem. Anal., 1996,
7, 305–312.
2806 | Org. Biomol. Chem., 2006, 4, 2801–2806
This journal is
The Royal Society of Chemistry 2006
©