Ka) = 1.075 mm21, T = 203 K, colourless blocks; 7040 independent
measured reflections, F2 refinement, R1 = 0.046, wR2 = 0.095, 4555
independent observed absorption corrected reflections [¡Fo¡ > 4s(¡Fo¡),
suppdata/cc/b4/b404864d/ for crystallographic data in .cif or other elec-
tronic format.
1 A. Pelter, K. Smith and H. C. Brown, Borane reagents, Academic Press,
1988; M. F. Lappert, Chem. Rev., 1956, 56, 1035.
2 M. F. Lappert and E. L. Muetterties, The Chemistry of Boron and its
Compounds, Wiley, New York, 1967.
3 E. Negishi, J. Organomet. Chem., 1976, 108, 281; E. Negishi, K. W.
Chin and T. Yoshida, J. Org. Chem., 1975, 40, 1676; E. Negishi, A.
Abramovitch and R. E. Merrill, J. Chem. Soc., Chem. Commun., 1975,
138; R. Hunter, J. P. Michael and G. D. Tomlinson, Tetrahedron, 1994,
50, 871.
4 N. Miyaura, M. Itoh and A. Suzuki, Bull. Chem. Soc. Jpn., 1977, 50,
2199; N. Miyaura, M. Itoh and A. Suzuki, Synthesis, 1976, 618; D. Zhu
and J. K. Kochi, Organometallics, 1999, 18(2), 161.
5 J. D. Odom, Comprehensive Organometallic Chemistry, Vol. 1, Ed. G.
Wilkinson and F. G. A. Stone, Pergamon Press, Oxford (1982).
6 R. Damico, J. Org. Chem., 1964, 29, 1971.
7 H. C. Brown, A. B. Levy and M. M. Midland, J. Am. Chem. Soc., 1975,
97, 5017.
8 J. B. Honeycutt and J. M. Riddle, J. Am. Chem. Soc., 1961, 83, 369; P.
Binger and R. Koster, Inorg. Synth., 1974, 15, 138; H. C. Brown and S.-
C. Kim, J. Org. Chem., 1984, 49, 1064.
9 H. C. Brown, G. W. Kramer, J. L. Hubbard and S. Krishnamurthy, J.
Organomet. Chem., 1980, 188, 1.
10 M. A. Grassberger and R. Koster, Angew. Chem. Int. Ed., 1969, 8,
275.
11 E. Kalbarczyk and S. Pasynkiewicz, J. Organomet. Chem., 1985,
292(1–2), 119–32.
12 D. Basavaiah and H. C. Brown, J. Org. Chem., 1982, 47, 1792; H. C.
Brown and G. G. Pai, J. Organomet. Chem., 1983, 250, 13; H. J.
Bestman, K. Suhs and T. Roders, Angew. Chem., Int. Ed. Engl., 1981,
20, 1038.
13 G. E. Herberich, U. Eigendorf and C. Ganter, J. Organomet. Chem.,
1991, 402, C17; S. Masamune, B. M. Kim, J. S. Petersen, T. Sato, S. J.
Veenstra and T. Imai, J. Am. Chem. Soc., 1985, 107, 4549.
14 H. Braunschweig and G. DAAndola, unpublished results. For example, in
the case of R2B(CH2)3MgBr with R2 = 9-BBN or Cy2, the 1H NMR
spectra show a highfield shifted triplet for the a-CH2 methylene protons
adjacent to the boron centre, and deshielded signals in the 11B NMR
spectra at approximately 80 ppm, thus proving the presence of three
coordinate boron.
15 G.-M. Chen and H. C. Brown, J. Am. Chem. Soc., 2000, 122, 4217; B.
Wrackmeyer, B. Schwarze and W. Milius, J. Organomet. Chem., 1997,
545, 297; M. Sigl, A. Schier and H. Schmidbaur, Chem. Ber., 1997, 130,
951; H. Schmidbaur, M. Sigl and A. Schier, J. Organomet. Chem., 1997,
529, 323; G. Erker, U. Hoffmann, R. Zwettler and C. Kruger, J.
Organomet. Chem., 1989, 367, C15; H. Schumann, B. C. Wassermann,
S. Schutte, B. Heymer, S. Nickel, T. D. Seuss, S. Wernik, J. Demtschuk,
F. Girgsdies and R. Weimann, Z. Anorg. Allg. Chem., 2000, 626, 2081;
R. Hunter, R. H. Haueisen and A. Irving, Angew. Chem., Int. Ed. Engl.,
1994, 33, 566; R. T. Baker, J. C. Calabrese, S. A. Westcott and T. B.
Marder, J. Am. Chem. Soc., 1995, 117, 8777.
Fig. 2 The structure of the anion 1,5-pentadiyl-9-borabicyclo[3.3.1]nonane
(4), determined by X-ray crystallography.
angle within the BC4 ring [C(1)–B–C(4) 100.9(3)°] the angles at the
boron centre are close to ideal tetrahedral, being in the range
109.9(3) to 112.0(3)°. Within statistical significance, all four B–C
bond lengths are the same [1.655(5) to 1.668(5) Å].
The solid state structure§ of
4
was shown to be
[(thf)5MgBr][C13H24B]·thf, confirming the presence of a magne-
sium bromide cation and the anion shown in Fig. 2. The geometry
at the boron is distorted tetrahedral with angles in the range
102.7(3)–113.2(3)°, the greater flexibility of the six-membered ring
causing less strain at the boron centre than is seen in 3, the C(1)–B–
C(5) angle being 104.8(3)° for the intra-ring boron angle in 4 cf.
100.9(3)° in 3. The six-membered (CH2)5B ring adopts a chair
conformation, as do both of the C5B portions of the 9-BBN ring.
The B–C bond lengths are in the narrow range 1.643(5)–1.649(5)
Å, at the high end of those seen for trialkyl boron centres with either
a (CH2)5B or 9-BBN ring system (ca. 1.60–1.64).15
Though a few examples of BC4H8 and BC5H10 rings have been
previously reported, we believe these to be the first examples of
such rings at a tetraalkyl boron centre.16 The most closely related
analogues are trialkylborohydride moieties {(H)(PhCH2)BC4H8}
and {(H)(PhCH2)BC5H10} in Cp2Zr{(m-H)B(X)CH2Ph}{(m-
H)2BX} (X = C5H10, C4H8), which are linked to the zirconium
centre via a B–H–Zr bridge.17 All other examples involving a
(H)2BC4H8 or (H)2BC5H10 unit are linked to a metal centre by two
B–H–M bridges.
In conclusion, this unprecedented ring closure reaction at the
boron centre represents a facile and versatile synthesis for
tetraalkylborates, which will be further exploited.
Notes and references
§
Crystal data for 3: [(C4H8O)6Mg](C16H30B)2·4C4H8O, M = 1211.77,
monoclinic, P21/n (no. 14), a = 13.8628(19), b = 17.177(3), c = 15.580(2)
Å, b = 96.390(11)° V = 3686.9(9) Å3, Z = 2 (Ci symmetry), Dc = 1.092
g cm23, m(Cu–Ka) = 0.613 mm21, T = 203 K, colourless plates; 4964
independent measured reflections, F2 refinement, R1 = 0.073, wR2 =
0.204, 3417 independent observed reflections [¡Fo¡ > 4s(¡Fo¡), 2qmax =
120°], 426 parameters. CCDC 236834.
Crystal data for 4: [(C4H8O)5MgBr](C13H24B)·C4H8O, M = 727.98,
monoclinic, P21/c (no. 14), a = 10.953(2), b = 14.4213(16), c = 25.584(3)
Å, b = 93.597(15)° V = 4033.4(11) Å3, Z = 4, Dc = 1.199 g cm23, m(Mo–
16 A search of the Jan-04 update of the Cambridge Crystallographic
Database (version 5.25) revealed no examples of a tetraalkylborate
centre with BC4H8 or BC5H10 rings.
17 F.-C. Liu, J. Liu, E. A. Meyers and S. G. Shore, Inorg. Chem., 1999, 38,
2169.
C h e m . C o m m u n . , 2 0 0 4 , 1 7 3 8 – 1 7 3 9
1739