154
F. Guo et al. / Bioorg. Med. Chem. Lett. 12 (2002) 151–154
interactions with the rigidly held N10-methylene group.
The calculated N1–H and N1–O distances are 2.16 and
1998, 2727. (c) Cuello, A. O.;McIntosh, C. M.;Rotello, V. M.
J. Am. Chem. Soc. 2000, 122, 3517.
˚
ꢀ
The calculated LUMO energy of 2 H O is intermediate
4. (a) Shinkai, S.;Honda, N.;Ishikawa, Y.;Manabe, O.
Am. Chem. Soc. 1985, 107, 6286. (b) Akiyama, T.;Simeno, F.;
Murakami, M.;Yoneda, F. J. Am. Chem. Soc. 1992, 114,
J.
3
.03 A, respectively, and the N1–H–O angle is 147.9 .
ꢃ
2
to that of 2 and 1a. Since solvent may be hydrogen
bonded to 2, the effect of hydrogen bonding in 1 may be
underestimated when compared to 2.
6
5
2
6
1
613.
. Hasford, J. J.;Rizzo, C. J. J. Am. Chem. Soc. 1998, 120,
251.
. Hasford, J. J.;Kemnitzer, W.;Rizzo, C. J. J. Org. Chem.
997, 62, 5244.
In summary, we have synthesized N1–hydrogen-bond-
ing model 1 and compared its redox chemistry with
related model 2 which lacks the N1–hydrogen-bonding
interaction. A shift in reduction potential and a sig-
nificant stabilization of the N5–sulfite complex indicates
the presence of the desired hydrogen bond. Contrary to
previous predictions, no measurable rate enhancement
for the addition of nucleophile to N5 was observed.
Deprotonated dihydroflavins are often drawn as the
N1-anion, however this charge is actually delocalized
into both pyrimidine carbonyls. The B3LYP/6-31+G*
optimized geometry of dihydro-lumiflavin anion pre-
dicts nearly equal distribution of the negative charge on
¨
7. Muller, F.;Eweg, J. K.;Szczesna, V. In Flavin and Flavo-
proteins;Brey, R. C., Engel, P. C., Meyhew, S. G., Eds.;W.
De Gruyter: Berlin, 1984;p 3.
8. Shinkai, S.;Kawanabe, S.;Kawase, A.;Yamaguchi, T.;
Manabe, O.;Harada, S.;Nakamura, H.;Kasai, N.
Chem. Soc. Jpn. 1988, 61, 2095.
Bull.
9
1
. Roth, R.;Erlenmeyer, H. Helv. Chim. Acta 1954, 37, 1064.
0. Evans, E. F.;Lewis, N. J.;Kapfer, I.;Macdonald, G.;
Taylor, R. J. K. Synth. Commun. 1999, 27, 1819.
1
1
1. Lambooy, J. P. Heterocycl. Comp. 1967, 9, 118.
2. Dweyer, T. M.;Mortl, S.;Kemter, K.;Bacher, A.;Fauq,
A.;Frerman, F. E. Biochemistry 1999, 38, 9735.
13. Roberts, D. L.;Salazar, D.;Fulmer, J. P.;Frerman, F. E.;
Kim, J.-J. Biochemistry 1999, 38, 1977.
2
0
N1 and both carbonyl oxygens. Flavoproteins often
show hydrogen bonds to these carbonyl groups. A
bifurcated hydrogen bond to N1 and the C2–carbonyl is
common. Hydrogen bonding to the C2 and C4 carbonyl
groups may play a significant role in activation of N5
toward nucleophilic addition.
1
1
1
1
1
4. Zhou, Z.;Swenson, R. P. Biochemistry 1995, 34, 3182.
5. Muller, F.;Massey, V. J. Biol. Chem. 1969, 244, 4007.
Macromolecules
978, 11, 65.
7. Frisch, M. J.;Trucks, G.W.;Schlegel, H. B.;Scuseria, G.
¨
6. Shinkai, S.;Yamada, S.;Kunitake, T.
E.;Robb, M. A.;Cheeseman, J. R.;Zakrzewski, V. G.;
Montgomery, J. A.;Stratmann, R. E.;Burant, J. C.;Dap-
prich, S.;Millam, J. M.;Daniels, A. D.;Kudin, K. N.;Strain,
M. C.;Farkas, O.;Tomasi, J.;Barone, V.;Cossi, M.;Cammi,
R.;Mennucci, B.;Pomelli, C.;Adamo, C.;Clifford, S.;Och-
terski, J.;Petersson, G. A.;Ayala, P. Y.;Cui, Q.;Morokuma,
K.;Malick, D. K.;Rabuck, A. D.;Raghavachari, K.;Fores-
man, J. B.;Cioslowski, J.;Ortiz, J. V.;Baboul, A. G.;Stefa-
nov, B. B.;Liu G.;Liashenko, A.;Piskorz, P.;Komaromi, I.;
Gomperts, R.;Martin, R. L.;Fox, D. J.;Keith, T.;Al-Laham,
M. A.;Peng, C. Y.;Nanayakkara, A.;Challacombe, M.;Gill,
P. M. W.;Johnson, B.;Chen, W.;Wong, M. W.;Andres, J.
L.;Gonzalez, C.;Head-Gordon, M.;Replogle, E. S.;Pople, J.
A., Gaussian 98, Revision A.9;Gaussian, Inc.;Pittsburgh, PA,
Acknowledgements
This work was supported by the National Institutes of
Health (GM56460). B.H.C. acknowledges fellowships
form the Vanderbilt Undergraduate Summer Research
Program and the Howard Hughes Medical Institute.
References and Notes
1
1
998.
8. Ridder, L.;Zuilhof, H.;Vervoot, J.;Rietjens, I. M. C. M.
1
. (a) Mu
voenzymes;Muller, F., Ed.;CRC: Boca Raton;1991;Vol. 1, p 1.
b) Ghisla, S.;Massey, V. Eur. J. Biochem. 1989, 181, 1.
¨
ller, F. In Chemistry and Biochemistry of Fla-
Methods Mol. Biol. 1999, 131, 207.
9. In addition to 1, 2 and 3d, the optimized geometries of
nine other oxidized flavin analogues were calculated (B3LYP/
-31G*). The calculated LUMO energies of these eleven flavins
1
(
2
8
3
. (a) Massey, V.;Hemmerich, P. Biochem. Soc. Trans. 1980,
, 246. (b) Ghisla, S.;Massey, V. Biochem. J. 1986, 239, 1.
. (a) Breinlinger, E.;Niemz, A.;Rotello, V. M. J. Am. Chem.
Soc. 1995, 117, 5379. (b) Kajiki, T.;Moriya, H.;Kondo, S.;
Nabeshima, T.;Yano, Y. J. Chem. Soc., Chem. Commun.
6
was found to be linearly correlated with the published two-
electron reduction potentials (R=0.977) as previously
observed. Details of our study will be reported elsewhere.
2
0. Rizzo, C. J. Antioxid. Redox Signal. 2001, 3, 737.