P a lla d iu m -Ca ta lyzed Cr oss-Cou p lin g
Rea ction s of 4-Tosyl-2(5H)-fu r a n on e w ith
Bor on ic Acid s: A F a cile a n d Efficien t
Rou te to Gen er a te 4-Su bstitu ted
2(5H)-F u r a n on es
J ie Wu,*,† Qiang Zhu,† Lisha Wang,† Reza Fathi,‡ and
Zhen Yang*,‡,§
F IGURE 1. Butenolide chemistry.
The Aaron Diamond AIDS Research Center, Rockefeller
University, 455 First Avenue, New York, New York 10016,
VivoQuest, Inc., 711 Executive Blvd., Suite Q,
Valley Cottage, New York 10989, and College of Chemistry
and Molecular Engineering, Peking University,
Beijing 100871, P. R. China
quently is utilized as a key intermediate to construct
complex molecules and also appears as a substructure
in peptide analogues and HIV-1 protease inhibitors.2h,i
In our ongoing combinatorial synthesis of natural
product-like molecular libraries,4d we were interested in
integrating this important fragment into our library
synthesis either as a structural subunit or as a synthon
to elaborate further complexity.
z.yang@vivoquest.com
Received October 8, 2002
Synthetically, to generate 4-substituted 2(5H)-furanone
is more challenging than its corresponding 3- or 5-sub-
stituted 2(5H)-furanone.3 Currently, the most frequently
used methods for synthesizing 4-substituted 2(5H)-fura-
none derivatives are based on the transition metal-
catalyzed coupling methods.3 For example, the first
Suzuki reaction of tetronic acid triflate with 9-alkyl-9-
BBN (51% yield) was adopted by Grigg3p during the total
synthesis of (-)-isoseiridine, and later the reaction of
Abstr a ct: An efficient and facile synthesis of 4-substituted
2(5H)-furanones using palladium catalyzed cross-coupling
reactions between 4-tosyl-2(5H)-furanone and boronic acids
is reported herein.
As a privileged fragment, 4-substituted 2(5H)-furanone
is a ubiquitous subunit in many butenolide-containing
natural products with remarkable biological activities.1
For example, butenolide A (see Figure 1),1f which was
isolated from P. syringae pv. tomato, shows an interesting
antimicrobial activity; Rubrolides B,1g,h a family of bio-
logically active marine ascidian (tunicate) metabolites
that have been isolated from Ritterella rubra and Syn-
oicum blochmanni, are potent antibiotics and show
moderate but selective inhibition of protein phosphatases
1 and 2A, significant cytotoxicity against P-388 suspen-
sion cultures of mouse lymphoid neoplasm and monolayer
cultures of human lung carcinoma (A-549), human colon
carcinoma (HT-29), and human melanoma (MEL-28). As
a valuable synthetic intermediate,2a-g butenolide fre-
(2) For example: (a) Renard, M.; Ghosez, L. A. Tetrahedron 2001,
57, 2597. (b) Concellon, J . M.; Riego, E.; Bernad, P. L. Org. Lett. 2002,
4, 1303. (c) Makabe, H.; Hattori, Y.; Tanaka, A.; Oritani, T. Org. Lett.
2002, 4, 1083. (d) Chio, Y.; Choo, H.; Chong, Y.; Lee, S.; Olgen, S.;
Schinazi, R. F.; Chu, C. K. Org. Lett. 2002, 4, 305. (e) Roush, W. R.;
Limberakis, C.; Kunz, R. K.; Barda, D. A. Org. Lett. 2002, 4, 1543. (f)
Ghosh, N.; McKee, S. P.; Thompson, W. J .; Darke, P. L.; Zugory, J . C.
J . Org. Chem. 1993, 58, 1025. (g) Wender, P. A.; Ihle, N. C.; Correia,
C. R. D. J . Am. Chem. Soc. 1988, 110, 5904. (h) Hanessian, S.; Park,
H.; Yang, R. Y. Synlett 1997, 351. (i) Hanessian, S.; Park, H.; Yang,
R. Y. Synlett 1997, 353. (j) Sulikowski, G. A.; Agnelli, F.; Spencer, P.;
Koomen, J . M.; Russell, D. H. Org. Lett. 2002, 4, 1447.
(3) (a) Lattmann, E.; Hoffmann, H. M. R. Synthesis 1996, 155. (b)
Knight, D. W. Contemp. Org. Synth. 1994, 1, 287. (c) Marshall, J . A.;
Wolf, M. A. J . Org. Chem. 1996, 61, 3238. (d) Xiao, W.-J .; Alper, H. J .
Org. Chem. 1997, 62, 3422. (e) Marshall, J . A.; Wolf, M. A. J . Org.
Chem. 1997, 62, 367. (f) J oh, T.; Nagata, H.; Takahashi, S. Inorg. Chim.
Acta. 1994, 220, 45. (g) Forgione, P.; Wison, P. D.; Fallis, A. G.
Tetrahedron Lett. 2000, 41, 17. (h) Reginato, G.; Capperucci, A.;
Degl’Innocenti, A.; Mordini, A.; Pecchi, S. Tetrahedron 1995, 51, 2129.
(i) Hoffmann, H. M. R.; Gerlach, K.; Lattmann, E. Synthesis 1996, 164.
(j) Hollingworth, G. J .; Sweeney, J . B. Tetrahedron Lett. 1992, 33, 7049.
(k) Hollingworth, G. J .; Perkins, G.; Sweeney, J . B. J . Chem. Soc.,
Perkin Trans. 1 1996, 1913. (l) Maon, R.; Richecoeur, A. M. E.;
Sweeney, J . B. J . Org. Chem. 1999, 64, 328. (m) Ma, S.; Shi, Z. J . Org.
Chem. 1998, 63, 6387. (n) Boukouvalas, J .; Lachance, N.; Ouellet, M.;
Trudeau, M. Tetrahedron Lett. 1998, 39, 7665. (o) Ma, S.; Shi, Z.; Yu,
Z. Tetrahedron Lett. 1999, 40, 2393. (p) Grigg, R.; Kennewell, P.; Savic,
V. Tetrahedron 1994, 50, 5489. (q) Honda, T.; Mizutani, H.; Kanai, K.
J . Org. Chem. 1996, 61, 9374. (r) Yao, M.-L.; Deng, M.-Z. J . Org. Chem.
2000, 65, 5034. (s) Ma, S. Chin. J . Org. Chem. (Youji Huahue) 2001,
21, 833 and references therein. (t) Mehta, G.; Sengupta, S. Tetrahedron
Lett. 1996, 37, 8625. (u) Rossi, R.; Bellina, F.; Biagetti, M. Synth.
Commun. 1999, 29, 3415. (v) Bella, M.; Piancatelli, G.; Pigro, M. C.
Tetrahedron 1999, 55, 12387. (w) Rossi, R.; Bellina, F.; Raugei, E.
Synlett 2000, 1749.
† Rockefeller University.
‡ VivoQuest, Inc.
§ Peking University.
(1) (a) Bohlmann, F.; Zdero, C.; King, R. M.; Robinson, H. Phy-
tochemistry 1981, 20, 2545. (b) Gadir, S. A.; Smith, Y.; Tada, A. A.;
Thaller, V. J . Chem. Res., Synop. 1986, 102. (c) Brima, T. S. US Patent
4,968,817, 1990; Chem. Abstr. 1991, 114, 185246y. (d) Tanabe, A. J pn.
Kokai Tokkyo. Koho J P 63,211,276 [88,211,276], 1988; Chem. Abstr.
1989, 110, 94978q. (e) Lee, G. C. M. Eur. Pat. Appl. EP 372,940, 1990;
Chem Abstr. 1990, 113, 191137j. (f) Midland, S. L.; Sims, J . J . J . Org.
Chem. 1995, 60, 1118. (g) Miao, S. W.; Andersen, R. J . J . Org. Chem.
1991, 56, 6275. (h) Ortega, M. J .; Zubia, E.; Ocafia, J . M.; Naranjo, S.;
Salva, J . Tetrahedron 2000, 56, 3963. (i) Ducharme, Y.; Gauthier, J .
Y.; Prasit, P.; Leblanc, Y.; Wang, Z.; Leger, S.; Therien, M. PCT Int.
Appl. WO 95 00,501, 1995; Chem. Abstr. 1996, 124, 55954y. (j) Lee, G.
C. M.; Garst, M. E. PCT Int. Appl. WO 91 16,055, 1991; Chem. Abstr.
1992, 116, 59197m. (k) Honda, T.; Mizutani, H.; Kanai, K. J . Org.
Chem. 1996, 61, 9374. (l) Bellina, F.; Anselmi, C.; Viel, S.; Mannina,
L.; Rossi, R. Tetrahedron 2001, 57, 9997 and references therein. (m)
For pyrroxanthin, see: J ohansen, J . E.; Svec, W. A.; Liaaen-J ensen,
S.; Haxo, F. T. Phytochemistry 1974, 13, 2261. (n) For dihydroxerulin,
xerulin, and xerulinic acid, see: Kuhnt, D.; Anke, T.; Besl, H.; Bross,
M.; Herrmann, R.; Mocek, U.; Steffan, B.; Steglich, W. J . Antiobiot.
1990, 43, 1413. (o) For (-)-dysiolide, see: Gunaskera, G. P.; McCarthy,
P. J .; Kelly Borges, M.; Lobkovsky, E.; Clardy, J . J . Am. Chem. Soc.
1996, 118, 8759. (p) For (-)-seiridin, see: Sparapano, L.; Evidente,
A.; Ballio, A.; Graniti, A.; Randazzo, G. Experientia 1986, 42, 627.
(4) (a) Tallarico, J . A.; Depew, K. M.; Pelish, H. E.; Westwood, N.
J .; Lindsley, C. W.; Shair, M. D.; Schreiber, S. L.; Foley, M. A. J . Comb.
Chem. 2001, 3, 312. (b) Pelish, H. E.; Westwood, N. J .; Feng, Y.;
Kirchhausen, T.; Shair, M. D. J . Am. Chem. Soc. 2001, 123, 6740. (c)
http://iccb.med.harvard.edu. (d) Liao, Y.; Reitman, M.; Zhang, Y.; Fathi,
R.; Yang, Z. Org. Lett. 2002, 4, 2607. (e) Liao, Y.; Fathi, R.; Reitman,
M.; Zhang, Y.; Yang, Z. Tetrahedron Lett. 2001, 42, 1815.
10.1021/jo020640f CCC: $25.00 © 2003 American Chemical Society
Published on Web 12/14/2002
670
J . Org. Chem. 2003, 68, 670-673