Page 9 of 11
Journal of the American Chemical Society
(19) Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock,
(37) Mayr, J. C.; Grosch, J. H.; Hartmann, L.; Rosa, L. F.; Spiess,
A. C.; Harnisch, F. Resting Escherichia coli as Chassis for Microbial
Electrosynthesis: Production of Chiral Alcohols. ChemSusChem
2019, 12, 1631‐1634.
R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M.
J.; Jones, A. K. Beyond fossil fuel–driven nitrogen transformations.
Science 2018, 360, eaar6611.
1
2
3
4
5
6
(20) Milton, R. D.; Abdellaoui, S.; Khadka, N.; Dean, D. R.; Leech,
D.; Seefeldt, L. C.; Minteer, S. D. Nitrogenase bioelectrocatalysis:
heterogeneous ammonia and hydrogen production by MoFe pro‐
tein. Energy Environ. Sci. 2016, 9, 2550‐2554.
(38) Weckbecker, A.; Gröger, H.; Hummel, W., Regeneration of
nicotinamide coenzymes: principles and applications for the syn‐
thesis of chiral compounds. In Biosystems Engineering I, Springer:
Berlin, 2010; pp 195‐242.
7
8
9
(21) Balaraman, E.; Srimani, D.; Diskin‐Posner, Y.; Milstein, D.
Direct synthesis of secondary amines from alcohols and ammonia
catalyzed by a ruthenium pincer complex. Catal. Lett. 2015, 145,
139‐144.
(22) Chen, H.; Cai, R.; Patel, J.; Dong, F.; Chen, H.; Minteer, S. D.
Upgraded Bioelectrocatalytic N2 Fixation: From N2 to Chiral
Amine Intermediates. J. Am. Chem. Soc. 2019, 141, 4963‐4971.
(23) Yin, X.; Liu, Y.; Meng, L.; Zhou, H.; Wu, J.; Yang, L. Rational
Molecular Engineering of Glutamate Dehydrogenases for Enhanc‐
ing Asymmetric Reductive Amination of Bulky α‐Keto Acids. Adv.
Synth. Catal. 2019, 361, 803‐812.
(24) Zhang, J.; Zhu, T.; Wu, X.; Chen, Y. Enhancement of biocat‐
alytic efficiency by increasing substrate loading: enzymatic prep‐
aration of l‐homophenylalanine. Appl. Microbiol. Biotechnol. 2013,
97, 8487‐8494.
(25) Zhu, L.; Wu, Z.; Jin, J.‐M.; Tang, S.‐Y. Directed evolution of
leucine dehydrogenase for improved efficiency of L‐tert‐leucine
synthesis. Appl. Microbiol. Biotechnol. 2016, 100, 5805‐5813.
(26) Vedha‐Peters, K.; Gunawardana, M.; Rozzell, J. D.; Novick,
S. J. Creation of a broad‐range and highly stereoselective D‐amino
acid dehydrogenase for the one‐step synthesis of D‐amino acids.
J. Am. Chem. Soc. 2006, 128, 10923‐10929.
(27) Dennig, A.; Gandomkar, S.; Cigan, E.; Reiter, T. C.; Haas, T.;
Hall, M.; Faber, K. Enantioselective biocatalytic formal α‐amina‐
tion of hexanoic acid to l‐norleucine. Org. Biomol. Chem. 2018, 16,
8030‐8033.
(28) Jiang, W.; Fang, B.‐S. Construction and evaluation of a novel
bifunctional phenylalanine–formate dehydrogenase fusion pro‐
tein for bienzyme system with cofactor regeneration. J. Ind. Mi‐
crobiol. Biotechnol. 2016, 43, 577‐584.
(29) Wu, H.; Tian, C.; Song, X.; Liu, C.; Yang, D.; Jiang, Z. Meth‐
ods for the regeneration of nicotinamide coenzymes. Green Chem.
2013, 15, 1773‐1789.
(30) van der Donk, W. A.; Zhao, H. Recent developments in pyr‐
idine nucleotide regeneration. Curr. Opin. Biotechnol. 2003, 14,
421‐426.
(31) Yuan, M.; Sahin, S.; Cai, R.; Abdellaoui, S.; Hickey, D. P.;
Minteer, S. D.; Milton, R. D. Creating a low‐potential redox poly‐
mer for efficient electroenzymatic CO2 reduction. Angew. Chem.
2018, 130, 6692‐6696.
(32) Cai, R.; Milton, R. D.; Abdellaoui, S.; Park, T.; Patel, J.; Alko‐
taini, B.; Minteer, S. D. Electroenzymatic C–C bond formation
from CO2. J. Am. Chem. Soc. 2018, 140, 5041‐5044.
(33) Kuk, S. K.; Singh, R. K.; Nam, D. H.; Singh, R.; Lee, J. K.;
Park, C. B. Photoelectrochemical reduction of carbon dioxide to
methanol through a highly efficient enzyme cascade. Angew.
Chem. Int. Ed. 2017, 56, 3827‐3832.
(34) Yuan, M.; Kummer, M.; Milton, R. D.; Quah, T.; Minteer, S.
D. Efficient NADH Regeneration by a Redox Polymer‐Immobi‐
lized Enzymatic System. ACS Catal. 2019, 9, 5486‐5495.
(35) Alkotaini, B.; Abdellaoui, S.; Hasan, K.; Grattieri, M.; Quah,
T.; Cai, R.; Yuan, M.; Minteer, S. D. Sustainable Bioelectrosynthe‐
sis of the Bioplastic Polyhydroxybutyrate: Overcoming Substrate
Requirement for NADH Regeneration. ACS Sustain. Chem. Eng.
2018, 6, 4909‐4915.
(39) Milton, R. D.; Cai, R.; Sahin, S.; Abdellaoui, S.; Alkotaini, B.;
Leech, D. n.; Minteer, S. D. The in vivo potential‐regulated pro‐
tective protein of nitrogenase in Azotobacter vinelandii supports
aerobic bioelectrochemical dinitrogen reduction in vitro. J. Am.
Chem. Soc. 2017, 139, 9044‐9052.
(40) Plumeré, N.; Rüdiger, O.; Oughli, A. A.; Williams, R.; Vive‐
kananthan, J.; Pöller, S.; Schuhmann, W.; Lubitz, W. A redox hy‐
drogel protects hydrogenase from high‐potential deactivation and
oxygen damage. Nat. Chem. 2014, 6, 822.
(41) Lowe, D.; Thorneley, R. The mechanism of Klebsiella pneu‐
moniae nitrogenase action. Pre‐steady‐state kinetics of H2 for‐
mation. Biochem. J. 1984, 224, 877‐886.
(42) Thorneley, R. N.; Lowe, D. The mechanism of Klebsiella
pneumoniae nitrogenase action. Simulation of the dependences of
H2‐evolution rate on component‐protein concentration and ratio
and sodium dithionite concentration. Biochem. J. 1984, 224, 903‐
909.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(43) Koszelewski, D.; Tauber, K.; Faber, K.; Kroutil, W. ω‐Trans‐
aminases for the synthesis of non‐racemic α‐chiral primary
amines. Trends Biotechnol. 2010, 28, 324‐332.
(44) Wiame, J.; Pierard, A.; Ramos, F., [93] l‐Alanine dehydro‐
genase from Bacillus subtilis: L‐Alanine+ DPN++ H2O⇄ Pyruvate+
DPNH+ + H++ NH4 . In Methods in Enzymology, Elsevier: Amster‐
+
dam, 1962; pp 673‐676.
(45) Schütte, H.; Hummel, W.; Tsai, H.; Kula, M.‐R. l‐leucine de‐
hydrogenase from Bacillus cereus. Appl. Microbiol. Biotechnol.
1985, 22, 306‐317.
(46) Chen, H.; Huang, R.; Kim, E. J.; Zhang, Y. H. P. J. Building a
thermostable metabolon for facilitating coenzyme transport and
in vitro hydrogen production at elevated temperature. ChemSus‐
Chem 2018, 11, 3120‐3130.
(47) Kim, E.‐J.; Kim, J.‐E.; Zhang, Y.‐H. P. J. Ultra‐rapid rates of
water splitting for biohydrogen gas production through in vitro
artificial enzymatic pathways. Energy Environ. Sci. 2018, 11, 2064‐
2072.
(48) Chandrayan, S. K.; Wu, C.‐H.; McTernan, P. M.; Adams, M.
W. High yield purification of a tagged cytoplasmic [NiFe]‐hydro‐
genase and a catalytically‐active nickel‐free intermediate form.
Protein Expr. Purif. 2015, 107, 90‐94.
(49) Badalyan, A.; Yang, Z.‐Y.; Seefeldt, L. C. A Voltammetric
study of nitrogenase catalysis using electron transfer mediators.
ACS Catal. 2019, 9, 1366‐1372.
(50) Xue, Y.‐P.; Cao, C.‐H.; Zheng, Y.‐G. Enzymatic asymmetric
synthesis of chiral amino acids. Chem. Soc. Rev. 2018, 47, 1516‐1561.
(51) Li, H.; Zhu, D.; Hyatt, B. A.; Malik, F. M.; Biehl, E. R.; Hua, L.
Cloning, protein sequence clarification, and substrate specificity
of a leucine dehydrogenase from Bacillus sphaericus ATCC4525.
Appl. Biochem. Biotechnol. 2009, 158, 343‐351.
(52) Kaufman, S.; Mason, K. Specificity of amino acids as activa‐
tors and substrates for phenylalanine hydroxylase. J. Biol. Chem.
1982, 257, 14667‐14678.
(53) Qi, Y.; Yang, T.; Zhou, J.; Zheng, J.; Xu, M.; Zhang, X.; Rao,
Z.; Yang, S.‐T. Development of a multi‐enzymatic desymmetriza‐
tion and its application for the biosynthesis of L‐norvaline from
dl‐norvaline. Process Biochem. 2017, 55, 104‐109.
(36) Chen, X.; Cao, Y.; Li, F.; Tian, Y.; Song, H. Enzyme‐Assisted
Microbial Electrosynthesis of Poly (3‐hydroxybutyrate) via CO2
Bioreduction by Engineered Ralstonia eutropha. ACS Catal. 2018,
8, 4429‐4437.
(54) Hasegawa, S.; Suda, M.; Uematsu, K.; Natsuma, Y.; Hiraga,
K.; Jojima, T.; Inui, M.; Yukawa, H. Engineering of Corynebacte‐
rium glutamicum for high‐yield L‐valine production under oxygen
ACS Paragon Plus Environment