166
BORSZEKY ET AL.
unfavorable at high acid concentration and its adsorption
on the palladium surface is sterically hindered. Formation
of a CD : acid 1 : 2 transition complex is more feasible.
ACKNOWLEDGMENTS
SCHEME 4. Favored and unfavorable exchange between CD and
DBU in DBU–(tiglic acid)2 and DBU–tiglic acid salts, respectively.
We are thankful to M. von Arx for the synthesis of N-methyl cinchoni-
dine chloride. Financial support from the Swiss National Science Founda-
tion is gratefully acknowledged.
This behavior corroborates that not only a base–acid inter-
action exists between CD and the acid dimer (8, 12, 14), but
the H-bonding between the OH group of CD and the acid
dimer also contributes to the total interaction energy in the
adduct (15).
REFERENCES
1. Rieu, J. P., Boucherle, A., Cousse, H., and Mouzin, G., Tetrahedron 42,
4095 (1986).
2. Shen, T. Y., Angew. Chem. Int. Ed. Engl. 11, 460 (1972).
3. Noyori, R., and Takaya, H., Acc. Chem. Res. 23, 345 (1990).
4. Zhang, X., Mashima, K., Koyano, K., Sayo, N., and Kumobayashi, H.,
Tetrahedron Lett. 32, 7283 (1991).
5. Uemura, T., Zhang, X., Matsumura, K., Sayo, N., Kumobayashi, H.,
Ohta, T., Nozaki, K., and Takaya, H., J. Org. Chem. 61, 5510 (1996).
6. Baiker, A., Curr. Opin. Solid State Mater. Sci. 3, 86 (1998).
7. Wells, P. B., and Wilkinson, A. G., Top. Catal. 5, 39 (1998).
8. Borszeky, K., Mallat, T., and Baiker, A., Catal. Lett. 41, 199 (1996).
9. Nitta, Y., and Kobiro, K., Chem. Lett. 897 (1996).
10. Smith, G. V., Cheng, J., and Song, R., Catal. Lett. 45, 73 (1997).
11. Barto´k, M., Wittmann, G., Go¨ndo¨s, G., and Smith, G. V., J. Org. Chem.
52, 1139 (1987).
12. Borszeky, K., Mallat, T., and Baiker, A., Tetrahedron: Asymmetry 8,
3745 (1997).
13. Barrow, G. M., and Yerger, E. A., J. Am. Chem. Soc. 76, 5211 (1954).
14. Hall, T. J., Johnston, P., Vermeer, W. A. H., Watson, S. R., and Wells,
P. B. , Stud. Surf. Sci. Catal. 101, 221 (1996).
15. Nitta, Y., and Shibata, A., Chem. Lett. 161 (1998).
16. Stenberg and Travecedo, J. Org. Chem. 35, 4131 (1970).
17. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Gill, P. M. W., Johnson,
B. G., Robb, M. A., Cheeseman, J. R., Keith, T., Petersson, G. A.,
Montgomery, J. A., Raghavachari, K., Al-Laham, M. A., Zakrzewski,
V. G., Ortiz, J. V., Foresman, J. B., Cioslowski, J., Stefanov, B. B.,
Nanayakkara, A., Challacombe, M., Peng, C. Y., Ayala, P. Y., Chen,
W., Wong, M. W., Andres, J. L., Replogle, E. S., Gomperts, R., Martin,
R. L., Fox, D. J., Binkley, J. S., Defrees, D. J., Baker, J., Stewart, J. P.,
Head-Gordon, M., Gonzalez, C., and Pople, J. A., Gaussian Inc.,
Pittsburgh PA 1995.
Above a DBU : tiglic acid = 1 : 2 molar ratio the ee drop-
ped linearly with increasing amount of base. The most fea-
sible explanation for the loss of ee is the presence of an
increasing amount of DBU : tiglic acid = 1 : 1 salt in this con-
centration range. The interaction with CD would require
then the breaking of hydrogen bonds in two DBU : tiglic
acid 1 : 1 salt in order to form a CD–(tiglic acid)2 interme-
diate. This is thermodynamically unfavorable compared to
the substitution of DBU in the DBU–(tiglic acid)2 species
(Scheme 4). Thus the hydrogenation in the presence of 1 eq
DBU results in drastic loss of ee (10% ee). Note that the
same low ee was obtained recently in the hydrogenation of
sodium (E)- -phenylcinnamate (15).
On the basis of a wealth of literature data (29) and our
IR study, we proposed earlier (12, 27) that the alkenoic
acid reactant is dominantly present as dimers in an apolar
medium, and this structure is preserved during interaction
with CD on the Pd surface. As no direct (spectroscopic)
confirmation is available yet for this assumption, the re-
sults obtained in the presence of DBU in toluene provide
important indirect evidence for the proposed mechanistic
model.
18. Rylander, P. N., “Catalytic Hydrogenation over Platinum Metals.”
Academic Press, New York and London, 1967.
CONCLUSIONS
19. Prelog, V., Helv. Chim. Acta 36, 308 (1953).
Various CD derivatives modified at the quinuclidine ni-
trogen and/or at the (C-9)–OH group were synthesized and
tested in the enantioselective hydrogenation of tiglic acid.
The experiments confirmed a former proposal (15) that the
alcoholic OH group as well as the quinuclidine nitrogen of
cinchonidine are hydrogen bonded to the reactant alkenoic
acid in the enantiodifferentiation step. Hydrogenation ex-
periments in the presence of a strong and bulky base addi-
tive provided indirect evidence for our former assumption
that cinchonidine interacts with an alkenoic acid dimer on
the Pd surface. A feasible structure of the acid dimer–CD
intermediate which can easily adsorb on the catalyst surface
has been rationalized by ab initio calculation. The calcula-
tions indicated that formation of a CD : acid 1 : 1 adduct is
20. O’Murchu, C., Tetrahedron Lett. 1969, 3231 (1969).
21. Mitsui, S., Kasahara, A., and Endo, N., J. Chem. Soc. Jpn. 75, 234
(1954).
22. Galezowski, W., Jarczewski, A., Stanczyk, M., Brzezinski, B., Bartl, F.,
and Zundel, G., J. Chem. Soc. Faraday Trans. 93, 2515 (1997).
23. Budavari, S., “The Merck Index,” 11th ed. Merck, Rahway, NJ, 1989.
24. Ono, N., Yamada, T., Saito, T., Tanaka, K., and Kaji, A., Bull. Chem.
Soc. Jpn. 51, 2401 (1978).
25. Bu¨rgi, T., and Baiker, A., J. Am. Chem. Soc. 120, 12920 (1998).
26. Dijkstra, G. D. H., Kellogg, R. M., and Wynberg, H., Recueil des
Travaux Chimiques des Pays-Bas 108, 195 (1989).
27. Ferri, D., Bu¨rgi, T., and Baiker, A., J. Chem. Soc. Perkin Trans. 2. 1305
(1999).
28. Siegel, S., Adv. Catal. 16, 123 (1966).
29. Patai, S., “The Chemistry of Carboxylic Acids and Esters.” Inter-
science, London, 1969.