G Model
CCLET 3243 1–6
G. Grivani et al. / Chinese Chemical Letters xxx (2015) xxx–xxx
5
[2] M. Hobady, T.D. Smith, N,N0-ethylenebis(salicylideneiminato) transition metal ion 239
chelates, Coord. Chem. Rev. 9 (1973) 311–337.
[3] D.N. Dhar, C.L. Taploo, Schiff bases and their applications, J. Sci. Ind. Res. 41 (1982) 241
501–506.
Table 4
240
242
The epoxidation of alkenes catalyzed by VOL catalyst with TBHP under reflux
conditionsa
Alkene
% Conversion (% epoxide)b
81 (100)
Time (min)
150
[4] P. Przybylski, A. Huczynski, K. Pyta, B. Brzezinski, F. Bartl, Biological properties 243
of Schiff bases and azo derivatives of phenols, Curr. Org. Chem. 13 (2009) 244
124–148.
245
[5] A.A. Khandar, S.A. Hosseini-Yazdi, S.A. Zarei, Synthesis, characterization and X-ray 246
crystal structures of copper(II) and nickel(II) complexes with potentially hexa- 247
dentate Schiff base ligands, Inorg. Chim. Acta 358 (2005) 3211–3217.
[6] P.K. Mascharak, Structural and functional models of nitrile hydratase, Coord. 249
Chem. Rev. 225 (2002) 201–214.
[7] J.G. Muller, L.A. Kayser, S.J. Paikoff, et al., Formation of DNA adducts using 251
nickel(II) complexes of redox-active ligands: a comparison of salen and peptide 252
248
63 (100)c
52 (100)c
95
80
250
complexes, Coord. Chem. Rev. 185–186 (1999) 761–774.
[8] D.P. Kessissoglou, Homo- and mixed-valence EPR-active trinuclear manganese 254
complexes, Coord. Chem. Rev. 185 (1999) 837–858.
[9] J.W. Pyrz, A.L. Roe, L.J. Stern, L. Que, Model studies of iron-tyrosinate proteins, 256
J. Am. Chem. Soc. 107 (1985) 614–620.
253
255
257
24 (100)
240
[10] V.E. Kaasjager, L. Puglisi, E. Bouwman, W.L. Driessen, J. Reedijk, Synthesis, 258
characterization and crystal structures of nickel complexes with dissymmetric 259
tetradentate ligands containing a mixed-donor sphere, Inorg. Chim. Acta 310 260
5 (100)
300
300
300
(2000) 183–190.
261
[11] A.S. Al-Shihri, Synthesis, characterization and thermal analysis of some new 262
transition metal complexes of a polydentate Schiff base, Spectrochim. Acta A: 263
No reaction
51 (100)
Mol. Biomol. Spectrosc. 60 (2004) 1189–1192.
264
[12] A. Butler, J.V. Walker, Marine haloperoxidases, Chem. Rev. 93 (1993) 1937–1944. 265
[13] M. Andersson, A. Willetts, S. Allenmark, Asymmetric sulfoxidation catalyzed by a 266
vanadium-containing bromoperoxidase, J. Org. Chem. 62 (1997) 8455–8458.
267
[14] H.B. ten Brink, H.E. Schoemaker, R. Wever, Sulfoxidation mechanism of vanadium 268
bromoperoxidase from Ascophyllumnodosum: evidence for direct oxygen trans- 269
a
Reaction conditions: cis-cyclooctene (0.5 mmol), TBHP (1.5 mmol), catalyst
(0.015 mmol), CHCl3 solvent (5 mL).
fer catalysis, Eur. J. Biochem. 268 (2001) 132–138.
270
[15] V. Trevisan, M. Signoretto, S. Colonna, V. Pironti, G. Strukul, Microencapsulated 271
chloroperoxidase as a recyclable catalyst for the enantioselective oxidation of 272
b
GLC yield based on the starting alkene.
c
By continuation of the reaction the benzaldehyde (in the case of styrene) or
sulfides with hydrogen peroxid, Angew. Chem. Int. Ed. 43 (2004) 4097–4099.
[16] C.R. Cornman, E.P. Zovinka, M.H. Meixner, Vanadium(IV) complexes of an active- 274
273
acetophenone (in the case of
a-methyl styrene) was produced as a byproduct and
site peptide of
5099–5100.
a
protein tyrosine phosphatase, Inorg. Chem. 34 (1995) 275
276
the selectivity was decreased.
[17] P. Noblı´a, M. Vieites, B.S. Parajo´n-Costa, et al., Vanadium(V) complexes with 277
salicylaldehyde semicarbazone derivatives bearing in vitro anti-tumor activity 278
toward kidney tumor cells (TK-10): crystal structure of [VVO2(5-bromosalicylal- 279
210
211
212
convert the linear alkenes. In comparison, the catalytic activity of
the VOL was lower than the activity of recently reported vanadyl
Schiff base complexes.
dehyde semicarbazone)], J. Inorg. Biochem. 99 (2005) 443–451.
280
[18] Y. Shechter, I. Goldwaser, M. Mironchik, M. Fridkin, D. Gefel, Historic perspective 281
and recent developments on the insulin-like actions of vanadium; toward devel- 282
oping vanadium-based drugs for diabetes, Coord. Chem. Rev. 237 (2003) 3–11.
283
213
4. Conclusion
[19] A.M.B. Bastos, J.G. da Silva, P.I.S. Maia, et al., Oxovanadium(IV) and (V) complexes 284
of acetylpyridine-derived semicarbazones exhibit insulin-like activity, Polyhe- 285
214
215
216
217
218
219
220
221
222
223
In conclusion, a new asymmetric tetradentate VOL Schiff base
complex was synthesized and characterized by C, H, N analysis,
FT-IR, and UV–vis spectra. The crystal structure of the VOL was
determined by the single crystal X-ray analysis. Thermogravimetric
analysis of the VOL showed that it was stable up to 280 8C, and it
decomposed in two stages. Thermal decomposition of the VOL
complex at 660 8C converts it to V2O5 nanoparticles. In addition, the
catalytic activity of the complex was investigated in epoxidation
reaction, and different reaction parameters were optimized, showing
that it can be active and selective under the optimized conditions.
dron 27 (2008) 1787–1794.
[20] R.R. Eady, Current status of structure function relationships of vanadium nitro- 287
genase, Coord. Chem. Rev. 237 (2003) 23–30.
[21] J.A.L. da Silva, J.J.R. Frau´ stoda Silva, A.J.L. Pombeiro, Oxovanadium complexes in 289
catalytic oxidations, Coord. Chem. Rev. 255 (2011) 2232–2248.
286
288
290
[22] G. Licini, V. Conte, A. Coletti, M. Mba, C. Zonta, Recent advances in vanadium 291
catalyzed oxygen transfer reactions, Coord. Chem. Rev. 255 (2011) 2345–2357. 292
[23] V. Conte, F. Di Furia, G. Licini, Liquid phase oxidation reactions by peroxides in the 293
presence of vanadium complexes, Appl. Catal. A: Gen. 157 (1997) 335–361.
294
[24] S. Mohebbi, D.M. Boghaei, A.H. Sarvestani, Oxovanadium(IV) complexes as ho- 295
mogeneous catalyst—aerobic epoxidation of olefins, Appl. Catal. A: Gen. 278 296
(2005) 263–267.
297
[25] W. Zhang, A. Basak, Y. Kosugi, Y. Hoshino, H. Yamamoto, Enantioselective epoxi- 298
dation of allylic alcohols by a chiral complex of vanadium: an effective controller 299
system and a rational mechanistic model, Angew. Chem. Int. Ed. Engl. 44 (2005) 300
224
Acknowledgments
4389–4391.
[26] J.H. Hwang, M. Abu-Omar, New vanadium oxazoline catalysts for epoxidation of 302
allylic alcohols, Tetrahedron Lett. 40 (1999) 8313–8316.
[27] M. Bagherzadeh, M. Amini, A new vanadium Schiff base complex as catalyst for 304
oxidation of alcohols, J. Coord. Chem. 63 (2010) 3849–3858.
301
303
305
225
226
227
G. Grivani, A. Ghavamiand A.D. Khalajiaregrateful to the
Damghan University and Golestan University for financial support.
Crystallography was supported by the project 14-03276S of the
[28] E. Battistel, R. Tassinari, M. Fornaroli, L. Bonoldi, Oxidation of benzene by 306
molecular oxygen catalysed by vanadium, J. Mol. Catal. A: Chem. 202 (2003) 307
228 Q2 Czech Science Foundation.
107–115.
308
[29] G.B. Shul’pin, G. Su¨ ss-Fink, Oxidations by the reagent ‘H2O2–vanadium complex– 309
pyrazine-2-carboxylic acid’. Part 4. Oxidation of alkanes, benzene and alcohols by 310
229
Appendix A. Supplementary data
an adduct of H2O2 with urea, J. Chem. Soc., Perkin Trans. 2 (1995) 1459–1463.
311
[30] A. Barbarini, R. Maggi, M. Muratori, G. Sartori, R. Sartorio, Enantioselectivesulfox- 312
idation catalyzed by polymer-supported chiral Schiff base–VO(acac)2 complexes, 313
230
231
232
233
234
Crystallographic data (excluding structure factors) for the
structures reported in this paper have been deposited with the
Cambridge Crystallographic Center, CCDC No. 987361. Copies of
the data can be obtained free of charge through e-mail (deposit@
Tetrahedron: Asymmetry 15 (2004) 2467–2473.
[31] T.S. Smith II., V.L. Pecoraro, Oxidation of organic sulfides by vanadium haloper- 315
oxidase model complexes, Inorg. Chem. 41 (2002) 6754–6760.
314
316
[32] R. Ando, H. Ono, T. Yagyu, M. Maeda, Characterization of oxovanadium(IV)–Schiff- 317
base complexes and those bound on resin, and their use in sulfide oxidation, 318
Inorg. Chim. Acta. 357 (2004) 2237–2244.
319
[33] A. Biswas, M. Drew, A. Ghosh, Nickel(II) and copper(II) complexes of unsymme- 320
trical tetradentate reduced Schiff base ligands, Polyhedron 29 (2010) 1029–1034. 321
[34] L. Palatinus, G. Chapuis, SUPERFLIP-a computer program for the solution of crystal 322
structures by charge flipping in arbitrary dimensions, J. Appl. Crystallogr. 40 323
235
References
236
237
238
[1] M. Shebl, Synthesis and spectroscopic studies of binuclear metal complexes of a
tetradentate N2O2 Schiff base ligand derived from 4 6-diacetylresorcinol and
benzylamine, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 70 (2008) 850–859.
(2007) 786–790.
324
Please cite this article in press as: G. Grivani, et al., A new oxidovanadium(IV) Schiff base complex containing asymmetric tetradentate
ONN0O0 Schiff base ligand: Synthesis, characterization, crystal structure determination, thermal study and catalytic activity, Chin.