ChemComm
Communication
polymers, the tetraphenyladamantane simultaneously possesses
aromatic and aliphatic characteristics, which endow it with
remarkably high uptakes of both aromatic and alkyl hydrocarbon
vapors, exhibiting promising applications in environmental
protection as adsorbents to adsorb organic pollutants.
We thank the National Science Foundation of China (No.
51073030 and 51273031) for financial support of this research.
Notes and references
1 M. Bremer, P. S. Gregory and R. v. R. Schleyer, J. Org. Chem., 1989,
54, 3796–3799.
2 B. Chen, M. Eddaoudi, T. Reineke, J. Kampf, M. O. Keeffe and
O. Yaghi, J. Am. Chem. Soc., 2000, 122, 11559–11560.
3 R. W. Murray, S. N. Rajadhyaksha and L. Mohan, J. Org. Chem., 1989,
54, 5783–5788.
4 J. Kim, B. Chen, T. M. Reineke, H. Li, M. Eddaoudi, D. B.
Moler, M. O’Keeffe and O. M. Yaghi, J. Am. Chem. Soc., 2001, 123,
8239–8247.
Fig. 5 Organic and water vapor adsorption isotherms at 298 K of the polyimide
network, P0 is the saturated vapor pressure of those vapors.
5 P. Kuhn, A. Thomas and M. Antonietti, Macromolecules, 2008, 42,
319–326.
the abundant nitrogen and oxygen atoms in the polyimide network
as well as the molecular sieving effects of the micropores and
ultramicropores.9,17
¨
6 J. R. Holst, E. Stockel, D. J. Adams and A. I. Cooper, Macromolecules,
2010, 43, 8531–8538.
7 W. G. Lu, D. Q. Yuan, D. Zhao, C. I. Schilling, O. Plietzsch, T. Muller,
At 77 K and 1 bar, PI-ADPM exhibits 1.27 wt% hydrogen (H2)
uptake. It can be seen that, in the measured pressure range, the H2
uptake has not reached saturation, implying that larger storage can
be expected at higher pressure. The high adsorption capacity may
have arisen from the ultramicropores in the polyimide network.18
The Qst values calculated according to the H2 isotherms recorded at
77 K and 87 K display a rapid decrease with the adsorbed amount,
indicative of the favourable interaction between the network and
H2. Table S1 (ESI†) shows that the Q0 value is 6.76 kJ molÀ1, similar
to those of other porous polymers and microporous polyimides.8c,12
The adsorption isotherms of benzene, n-hexane, cyclohexane
and water vapors measured at 298 K are illustrated in Fig. 5. It is
interesting to observe that the presence of cycloaliphatic structure
results in PI-ADPM possessing significantly higher uptakes of
aliphatic vapors than the wholly aromatic porous polymers. For
example, the adsorbed amounts of hexane and cyclohexane for
PI-ADPM are as high as 49.8 wt% and 59.7 wt%, respectively,
whereas the values for microporous polybenzimidazoles19 and
porous aromatic frameworks (PAF-2)20 are only 1 to 8 wt%.
Most recently, a porphyrin-based porous polymer also exhibited
exceptional uptake capacity of saturated hydrocarbons.21 On the
other hand, PI-ADPM exhibits an uptake of 99.2 wt% benzene
vapor, surpassing the previously reported polymers with a similar
BET surface area such as CE-1 (960 m2 gÀ1, 58.5 wt%),22 PAF-2
(891 m2 gÀ1, 13.8 wt%) and PAF-11 (891 m2 gÀ1, 87.4 wt%).23 This
may be attributed to the strong p–p interaction between the
benzene molecule and the phenyl groups as well as the more
opened pore channels caused by the bulky tetraphenyladamantane
nodes. In contrast, the isotherm for water vapor exhibits type V
sorption, indicative of the hydrophobic nature of the PI-ADPM
network. As a consequence, its uptake of water vapor is 28.45 wt%,
lower than that of the organic vapors.
¨
S. Brase, J. Guenther, J. Blu¨mel, R. Krishna, Z. Li and H. C. Zhou,
Chem. Mater., 2010, 22, 5964–5972.
8 (a) J. Weber, Q. Su, M. Antonietti and A. Thomas, Macromol. Rapid
Commun., 2007, 28, 1871–1876; (b) B. S. Ghanem, N. B. McKeown,
P. M. Budd, N. M. Al-Harbi, D. Fritsch, K. Heinrich, L. Starannikova,
A. Tokarev and Y. Yampolskii, Macromolecules, 2009, 42, 7881–7888;
(c) Z. G. Wang, B. F. Zhang, H. Yu, L. X. Sun, C. L. Jiao and W. S. Liu,
Chem. Commun., 2010, 46, 7730–7732; (d) Z. G. Wang, B. F. Zhang,
H. Yu, G. Y. Li and Y. J. Bao, Soft Matter, 2011, 7, 5723–5730;
(e) S. A. Sydlik, Z. Chen and T. M. Swager, Macromolecules, 2011,
44, 976–980; ( f ) K. V. Rao, R. Haldar, C. Kulkarni, T. K. Maji and
S. J. George, Chem. Mater., 2012, 24, 969–971.
9 (a) J. R. Li, R. J. Kuppler and H. C. Zhou, Chem. Soc. Rev., 2009, 38,
1477–1504; (b) W. G. Lu, J. P. Sculley, D. Q. Yuan, R. Krishna,
Z. W. Wei and H. C. Zhou, Angew. Chem., Int. Ed., 2012, 51,
7480–7484.
10 V. R. Reichert and L. J. Mathias, Macromolecules, 1994, 27,
7015–7023.
11 Q. Wei, A. Lazzeri, F. D. Cuia, M. Scalari and E. Galoppini, Macromol.
Chem. Phys., 2004, 205, 2089–2096.
12 H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131,
8875–8883.
13 K. T. Jackson, M. G. Rabbani, T. E. Reich and H. M. El-Kaderi, Polym.
Chem., 2011, 2, 2775–2777.
14 C. R. Reid, I. P. O’Koy and K. M. Thomas, Langmuir, 1998, 14,
2415–2425.
15 T. Panda, P. Pachfule, Y. Chen, J. Jiang and R. Banerjee, Chem.
Commun., 2011, 47, 2011–2013.
16 M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2011, 23,
1650–1653.
17 L. Yu, C. Falco, J. Weber, R. J. White, J. Y. Howe and M. M. Titirici,
Langmuir, 2012, 28, 12373–12383.
18 (a) C. D. Wood, B. Tan, A. Trewin, H. J. Niu, D. Bradshaw,
M. J. Rosseinsky, Y. Z. Khimyak, N. L. Campbell, R. Kirk,
¨
E. Stochel and A. I. Cooper, Chem. Mater., 2007, 19, 2034–2048;
´
(b) J. Germain, F. Svec and J. M. J. Frechet, Chem. Mater., 2008, 20,
7069–7076.
19 H. Yu, M. Z. Tian, C. J. Shen and Z. G. Wang, Polym. Chem., 2013, 4,
961–968.
20 H. Ren, T. Ben, E. Wang, X. Jing, M. Xue, B. Liu, Y. Cui, S. Qiu and
G. Zhu, Chem. Commun., 2010, 46, 291–293.
21 X. S. Wang, J. Liu, J. M. Bonefont, D. Q. Yuan, P. K. Thallapally and
S. Q. Ma, Chem. Commun., 2013, 49, 1533–1535.
22 H. Yu, C. J. Shen, M. Z. Tian, J. Qu and Z. G. Wang, Macromolecules,
2012, 45, 5140–5150.
23 Y. Yuan, F. Sun, H. Ren, X. Jing, W. Wang, H. Ma, H. Zhao and
G. Zhu, J. Mater. Chem., 2011, 21, 13498–13502.
In conclusion, we have successfully synthesized a microporous
polyimide network based on the tetraphenyladamantane unit.
The sample uptakes 14.6 wt% CO2 at 273 K and 1 bar and
1.27 wt% H2 at 77 K and 1 bar. Different from previous porous
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 3321--3323 3323