134
R. Hattori et al. / Journal of Molecular Structure 750 (2005) 123–134
coordination of the matrix atom or molecule to the BF3
moiety of the complex from the opposite side of the CH CN
[7] L.M. Nxumalo, M. Andrzejak, T.A. Ford, Vib. Spectrosc. 12 (1996)
21.
2
3
[
[
8] L.M. Nxumalo, T.A. Ford, Spectrochim. Acta Part A 53 (1997) 2511.
9] L.M. Nxumalo, T.A. Ford, J. Mol. Struct. 436-437 (1997) 69.
moiety seems to be important. This weak interaction with a
matrix environment would reduce the red shift of the BF3
symmetric deformation of the complex. Particularly small
[
[
10] L.M. Nxumalo, T.A. Ford, S. Afr, J. Chem. 48 (1995) 30.
11] L.M. Nxumalo, T.A. Ford, J. Mol. Struct. 656 (2003) 303.
magnitudes of Dn in N seem to support this explanation.
2
[12] S. Fau, G. Frenking, Mol. Phys. 96 (1999) 519.
[
[
[
13] L.M. Nxumalo, M. Andrzejak, T.A. Ford, J. Chem. Inf. Comput. Sci.
6 (1996) 377.
14] L.M. Nxumalo, M. Andrzejak, T.A. Ford, J. Mol. Struct. 509 (1999)
87.
15] T.A. Ford, D. Steele, J. Phys. Chem. 100 (1996) 19336.
The frequency differences between the BF symmetric
3
3
deformations of the major and minor site species are
remarkably large in Ar and Xe matrices. A large site
splitting suggests that even a low dielectric matrix can affect
the nature of the vibrations or bondings of the complex.
Furthermore, this matrix effect is mode specific for the
vibrational spectra. A similar consideration of the theoreti-
cal study on the B–N bond length of the complex was
reported in the literature [29].
2
[16] A.W. Laubengayer, D.S. Sears, J. Am. Chem. Soc. 67 (1945) 164.
[17] J.L. Hoard, T.B. Owen, A. Buzzell, O.N. Salmon, Acta Crystallogr. 3
(
1950) 130.
[
[
[
[
18] K.F. Purcell, R.S. Drago, J. Am. Chem. Soc. 88 (1966) 919.
19] B. Swanson, D.F. Shriver, J.A. Ibers, Inorg. Chem. 8 (1969) 2182.
20] B. Swanson, D.F. Shriver, Inorg. Chem. 9 (1970) 1406.
21] M.A. Dvorak, R.S. Ford, R.D. Suenram, F.J. Lovas, K.R. Leopold,
J. Am. Chem. Soc. 114 (1992) 108.
4
. Conclusions
[22] R. Beattie, P.J. Jones, Angew. Chem. Int. Ed. Engl. 35 (1996) 1527.
[
[
[
23] N.P. Wells, J.A. Phillips, J. Phys. Chem. A 106 (2002) 1518.
24] R. Jurgens, J. Alml o¨ f, Chem. Phys. Lett. 176 (1991) 263.
25] M.A. Ablaeva, G.M. Zsidomirov, A.G. Pelmenshchikov, E.B. Burgina,
V.P. Baltakhinov, React. Kinet. Catal. Lett. 48 (1992) 569.
The FTIR spectra of CH CN–BF3 including its iso-
3
topically substituted species were observed in Ar, N and Xe
2
matrices, and matrix effects on the vibrational spectra of the
complexes were investigated. Several previously unreported
new absorptions were observed in Ar. The vibrational
[
26] V. Jonas, G. Frenking, M.T. Reetz, J. Am. Chem. Soc. 116 (1994) 8741.
[27] H. Jiao, P. von R, Schleyer, J. Am. Chem. Soc. 116 (1996) 7429.
[28] H.-G. Cho, B.-S. Cheong, J. Mol. Struct. (Theochem) 496 (2000) 185.
[
[
[
29] D.J. Giesen, J.A. Phillips, J. Phys. Chem. A 107 (2003) 4009.
30] H.S. Booth, K.S. Wilson, Inorg. Syn. 1 (1939) 21.
spectra in N and Xe were recorded for the first time. The
2
observed frequency shifts on complexation, Dn, were
qualitatively in good agreement with the results calculated
at the C3v eclipsed optimized geometry at the B3LYP/6-
31] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,
J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C.
Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B.
Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H.
Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.
Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li,
J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R.
Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P.
Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D.
Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S.
Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-
Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill,
B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople,
GAUSSIAN 03, Revision B.05, Gaussian, Inc., Pittsburgh, PA, 2003.
3
11CCG(d,p) level. For most of the vibrational modes that
reveal remarkable frequency shifts, the observed magni-
tudes of Dn were larger than the calculated values.
Therefore, the interaction that is responsible for the complex
formation in low temperature matrices is considered to be
stronger than that predicted by calculation. However, the
observed frequency shits for the BF symmetric defor-
3
mations were smaller than the calculated values, especially
in N . This suggests that even an inert matrix like rare gas or
2
N has a significant effect on a particular vibrational mode.
2
References
[32] J. Demaison, A. Dubrulle, D. Boucher, J. Burie, V. Typke, J. Mol.
Spectrosc. 76 (1979) 1.
[
33] J.L. Duncan, D.C. McKean, F. Tullini, G.D. Nivellini, J.P. Pe n˜ a,
J. Mol. Spectrosc. 69 (1978) 123.
[
1] J.A. Phillips, M. Canagaratna, H. Goodfriend, A. Grushow, J. Alml o¨ f,
K.R. Leopold, J. Am. Chem. Soc. 117 (1995) 12549.
¯
2] R. Nakane, T. Oyama, J. Phys. Chem. 70 (1966) 1146.
[34] T.B. Freedman, E.R. Nixon, Spectrochim. Acta Part A 28 (1972) 1375.
35] L. Schriver, A. Schriver, J.-P. Perchard, J. Chem. Soc., Faraday Trans.
81 (1985) 1407.
[
[
[3] A.A. Stolov, W.A. Herrebout, B.J. van der Veken, J. Am. Chem. Soc.
2
1
20 (1998) 7310.
4] W.A. Herrebout, J. Lundell, B.J. van der Veken, J. Phys. Chem. A 103
1999) 7639.
5] W.A. Herrebout, B.J. van der Veken, Phys. Chem. Chem. Phys. 1
1999) 3445.
6] D.G. Evans, G.A. Yeo, T.A. Ford, Faraday Discuss. Chem. Soc. 86
1988) 55.
[
[
[
[36] T. Shimanouchi, J. Phys. Chem. Ref. Data 6 (1977) 993.
[37] L.M. Nxumalo, T.A. Ford, Vib. Spectrosc. 6 (1994) 333.
[38] J.M. Bassler, P.L. Timms, J.L. Margrave, J. Chem. Phys. 45 (1966)
2704.
(
(
[39] M.E. Jacox, K.K.Irikura, W.E. Thompson, J. Chem. Phys. 113 (2000)
5705.
(