Page 3 of 5
Journal of the American Chemical Society
To further investigate the nature of intermediate A’, and to
studies and kinetic modelling. This material is available free of
1
2
3
4
5
6
7
8
connect its structure to the observed bathochromic shift of the
transient absorption, TDꢀDFT calculations were performed (SI
section 12). The obtained results confirmed that Z–Eisomerization
can cause a bathochromic shift in the absorption spectrum. This
finding is further supported by reports on the bathochromic shift
of the absorption spectrum upon photoisomerization of analogous
cyanine dyes that cannot undergo cyclization.60,61Moreover, lowꢀ
AUTHOR INFORMATION
Corresponding Author
* b.l.feringa@rug.nl
1
temperature HꢀNMR spectroscopy measurements with inꢀNMR
ACKNOWLEDGMENT
irradiation show the photogeneration of a single unstable intermeꢀ
diate in deuterated dichloromethane that mainly affects chemical
shifts in the polyene region (SI section 11).
The Netherlands Organization for Scientific Research (NWOꢀ
CW, Top grant to B.L.F., VIDI grant no. 723.014.001 for W.S.
and Veni grant no. 722.014.006 to S.J.W.), the Royal Netherlands
Academy of Arts and Sciences Science (KNAW), the Ministry of
Education, Culture and Science (Gravitation program
024.001.035) and the European Research Council (Advanced
Investigator Grant, no. 227897 to B.L.F) are acknowledged for
financial support. The Swiss Study Foundation is acknowledged
for a fellowship to M.M.L. We thank P. van der Meulen for help
with the NMR studies and T. TiemersmaꢀWegman for ESIꢀMS
analyses andProf.W.R. Browne and J. Chen for technical assisꢀ
tance and discussion.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Finally, the kinetics of photoswitching were studied in more
detail. Reaction rates of the different steps were measured directly
or indirectly (Table 1) and fitted to a kinetic model based on our
mechanistic hypothesis (Figure 2, SI section 13). The timeꢀ
dependence of the production and consumption of Bwas calculatꢀ
ed by making the assumption that A’ and Bshow negligible abꢀ
sorbance at 545 nm and A and Bshow negligible absorbance at
600 nm. Overall, the measured and modelled reaction rates agree
qualitatively and are in line the proposed energy level diagram
(Figure 2b).
REFERENCES
Table 1. Measured rate constants and activation parameters for
DASA 1 (given for 293 K).
(1)
Molecular switches, 2nd Edition; Feringa, B. L., Browne, W. R.,
Eds.; WileyꢀVCH: Weinheim; Germany, 2011.
Griesbeck, A. G.; Oelgemöller, M.; Ghetti, F. CRC Handbook of
Organic Photochemistry and Photobiology, 3rd Edition., 2 Vol.;
CRC Press, 2012.
entry rateꢀconstanta)
k (sꢀ1)
ꢁG‡ (kJ molꢀ1)
t1/2 (s)
(2)
kꢀ1,thermal
k2
1.62
0.17
70.6
76.0
84.9
0.43
4.05
154
1
2
3
(3)
(4)
Juris, A.; Ceroni, P.; Balzani, V. Photochemistry and
photophysics; WileyꢀVCH: Weinheim; Germany, 2014.
Brieke, C.; Rohrbach, F.; Gottschalk, A.; Mayer, G.; Heckel, A.
Angew. Chem. Int. Ed.2012, 51, 8446ꢀ8476.
kꢀ2
0.0045
a) See Figure 2 for scheme.
(5)
(6)
Russew, M.ꢀM.; Hecht, S. Adv. Mater.2010, 22, 3348ꢀ3360.
Fihey, A.; Perrier, A.; Browne, W. R.; Jacquemin, D. Chem.
Soc. Rev.2015, 44, 3719ꢀ3759.
In conclusion, we report the observation of a transientabsorpꢀ
tion band during the photoswitching of DASA, which we propose
manifests Z–Eisomerization. The Z–Eisomerization is followed by
thermally driven ringꢀclosure. The observed photoswitching
behavioris analogous to that of spiropyrans.15,30–32,62–64Notably,
for spiropyrans the cisoid intermediates are generally not obꢀ
served and usually only stable enough to be detected at low temꢀ
perature and in presence of steric bulk in the molecule.15,62,65–
67The observed intermediateA’ is responsible for a bathochromiꢀ
cally shifted (ꢀλ = 55 nm)absorptionthat appears transiently durꢀ
ing irradiation. A’ is thermally unstable, but nevertheless it can be
studied spectroscopically at low temperature(253 K). Importantly,
the present study lays the foundation for a more detailed underꢀ
standing of this new class of photoswitches. It gives insights into
the nature of intermediate A’ and the relative stabilities of A’ and
B. Understanding the role of each species in the overall phoꢀ
toswitching mechanism enables a structured approach to address
the thermal stability of the intermediates, spectral properties and
solvent dependence. For example, solvatochromism will be mainꢀ
ly governed by the relative stability of A and B,whereas the waveꢀ
length of activation will depend only on the Z–Eisomerization
step. These data will enable the full potential of this remarkable
new class of photoswitch to be realized.
(7)
(8)
Balzani, V.; Credi, A.; Raymo, F.; Stoddart, J. Angew. Chem.
Int. Ed.2000, 39, 3348ꢀ3391.
ErbasꢀCakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer,
A. L. Chem. Rev.2015, 115, 10081ꢀ10206.
(9)
(10)
Natali, M.; Giordani, S. Chem. Soc. Rev.2012, 41, 4010ꢀ4029.
Balzani, V.; Credi, A.; Venturi, M. Molecular devices and
machinesꢀ: concepts and perspectives for the nanoworld; Wileyꢀ
VCH: Weinheim; Germany: Weinheim, 2008.
(11)
(12)
Molecular machines and motors; Topics in current chemistry,
Vol. 354; Credi, A.; Silvi, S.; Venturi, M. Eds.; Springer, 2014.
Iamsaard, S.; Aßhoff, S. J.; Matt, B.; Kudernac, T.; Cornelissen,
J. J. L. M.; Fletcher, S. P.; Katsonis, N. Nat. Chem.2014, 6, 229ꢀ
235.
(13)
Baroncini, M.; d’Agostino, S.; Bergamini, G.; Ceroni, P.;
Comotti, A.; Sozzani, P.; Bassanetti, I.; Grepioni, F.; Hernandez,
T. M.; Silvi, S.; Venturi, M.; Credi, A. Nat. Chem.2015, 7, 634ꢀ
640.
(14)
(15)
(16)
Lebeau, B.; Innocenzi, P. Chem. Soc. Rev.2011, 40, 886ꢀ906.
Klajn, R. Chem. Soc. Rev.2014, 43, 148ꢀ184.
Pardo, R.; Zayat, M.; Levy, D. Chem. Soc. Rev.2011, 40, 672ꢀ
687.
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
Stoll, R. S.; Hecht, S. Angew. Chem. Int. Ed. Engl.2010, 49,
5054ꢀ5075.
Blanco, V.; Leigh, D. A.; Marcos, V. Chem. Soc. Rev.2015, 44,
5341ꢀ5370.
Qu, D.ꢀH.; Wang, Q.ꢀC.; Zhang, Q.ꢀW.; Ma, X.; Tian, H. Chem.
Rev.2015, 115, 7543ꢀ7588.
Wezenberg, S. J.; Vlatković, M.; Kistemaker, J. C. M.; Feringa,
B. L. J. Am. Chem. Soc.2014, 136, 16784ꢀ16787.
Vlatković, M.; Feringa, B. L.; Wezenberg, S. J. Angew. Chem.
Int. Ed.2016, 55, 1001ꢀ1004.
ASSOCIATED CONTENT
Supporting Information
Szymański, W.; Beierle, J. M.; Kistemaker, H. A. V; Velema,
W. A.; Feringa, B. L. Chem. Rev.2013, 113, 6114ꢀ6178.
Velema, W. A.; Szymański, W.; Feringa, B. L. J. Am. Chem.
Soc.2014, 136, 2178ꢀ2191.
Experimental procedures and characterization of compounds,
additional UV/Vis absorption spectra, reversible photochromism
Broichhagen, J.; Frank, J. A.; Trauner, D. Acc. Chem. Res.2015,
Page 3 of 5
ACS Paragon Plus Environment