ORGANIC
LETTERS
2007
Vol. 9, No. 11
2119-2122
Rhodium-Catalyzed Conjugate
Addition Enantioselective Protonation:
The Synthesis of
−
r,r′-Dibenzyl Esters
Christopher G. Frost,*,† Stephen D. Penrose,† Kim Lambshead,† Paul R. Raithby,†
John E. Warren,§ and Robert Gleave‡
Department of Chemistry, UniVersity of Bath, Bath, BA2 7AY, United Kingdom,
Neurology and Gastrointestinal Centre of Excellence for Drug DiscoVery,
GlaxoSmithKline, New Frontiers Science Park, Third AVenue, Harlow, Essex,
CM19 5AW, United Kingdom, and CCLRC Daresbury Laboratory, Daresbury,
Warrington WA4 4AD, United Kingdom
Received March 12, 2007
ABSTRACT
r
-Benzyl acrylates, which are conveniently prepared from the corresponding aldehydes, can be employed as substrates in a tandem rhodium-
catalyzed conjugate addition enantioselective protonation protocol to afford enantiomerically enriched r′-dibenzyl esters. The synergistic
effect of enantiopure ligand and proton source was rapidly optimized with use of a microwave reactor.
−
r,
Tandem catalytic reactions including enantioselective pro-
cesses have emerged as important methods for the formation
of new chemical bonds in an efficient manner.1 Within this
context, the stereoselective construction of C-C bonds with
the rhodium-catalyzed 1,4-addition of organometallics can
generate a reactive π-allylrhodium intermediate for further
C-C bond-forming reactions.2,3 An interesting and chal-
lenging variant of this type of process is the asymmetric
arylation of activated alkenes or allenes via enantioselective
protonation.4,5 This approach entails the selective protonation
of a chiral π-allylrhodium intermediate formed by the
reaction of a 1,1′-disubstituted substrate and an arylrhodium
species (Figure 1). In this circumstance, the combined effect
of the chiral rhodium complex, the nature of the organo-
metallic, and the structure of the proton source dictate the
overall enantioselectivity.6
† University of Bath.
‡ GlaxoSmithKline.
§ CCLRC Daresbury.
(1) (a) Pelissier, H. Tetrahedron 2006, 62, 2143-2173. (b) Pellissier,
H. Tetrahedron 2006, 62, 1619-1665. (c) Chapman, C. J.; Frost, C. G.
Synthesis 2007, 1-21 and references cited therein.
(2) For reviews see: (a) Hayashi, T. Synlett 2001, 879-887. (b) Hayashi,
T.; Yamasaki, K. Chem. ReV. 2003, 103, 2829-2844. (c) Fagnou, K.;
Lautens, M. Chem. ReV. 2003, 103, 169-196. (d) Darses, S.; Geneˆt, J.-P.
Eur. J. Org. Chem. 2003, 4313-4327. (e) Hayashi, T. Bull. Chem. Soc.
Jpn. 2004, 77, 13-21.
(3) (a) Yoshida, K.; Ogasawara, M.; Hayashi, T. J. Am. Chem. Soc. 2002,
124, 10984-10985. (b) Yoshida, K.; Ogasawara, M.; Hayashi, T. J. Org.
Chem. 2003, 68, 1901-1905. (c) Cauble, D. F.; Gipson, J. D.; Krische, M.
J. J. Am. Chem. Soc. 2003, 125, 1110-1111. (d) Bocknack, B. M.; Wang,
L. C.; Krische, M. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5421-5424.
(4) (a) Reetz, M. T.; Moulin, D.; Gosberg, A. Org. Lett. 2001, 3, 4083-
4085. (b) Chapman, C. J.; Wadsworth, K. J.; Frost, C. G. J. Organomet.
Chem. 2003, 680, 206-211. (c) Moss, R. J.; Wadsworth, K. J.; Chapman,
C. J.; Frost, C. G. Chem. Commun. 2004, 1984-1985. (d) Navarre, L.;
Darses, S.; Geneˆt, J.-P. Angew. Chem., Int. Ed. 2004, 43, 719-723. (e)
Sibi, M. P.; Tadamidani, H.; Patil, K. Org. Lett. 2005, 7, 2571-2573. (f)
Hargrave, J. D.; Herbert, J.; Bish, G.; Frost, C. G. Org. Biomol. Chem.
2006, 4, 3235-3241. (g) Hargrave, J. D.; Bish, G.; Frost, C. G. Chem.
Commun. 2006, 4389-4391.
(5) Nishimura, T.; Hirabayashi, S.; Yasuhara, Y.; Hayashi, T. J. Am.
Chem. Soc. 2006, 128, 2556-2557.
(6) For a review on the enantioselective protonation of enolates, see:
Eames, J.; Weerasooriya, N. Tetrahedron: Asymmetry 2001, 12, 1-24.
10.1021/ol070603g CCC: $37.00
© 2007 American Chemical Society
Published on Web 04/28/2007