468
R. Kaspera et al. / Biochemical and Biophysical Research Communications 418 (2012) 464–468
stereospecificity of 7 alpha- and 12 alpha hydroxysteroid dehydrogenase,
Biochim. Biophys. Acta 998 (1989) 173–178.
[14] J.S. Miles, A.W. Munro, B.N. Rospendowski, W.E. Smith, J. McKnight, A.J.
Thomson, Domains of the catalytically self-sufficient cytochrome P-450 BM-3.
Genetic construction, overexpression, purification and spectroscopic
characterization, Biochem. J. 288 (Pt 2) (1992) 503–509.
[15] A.W. Munro, S. Daff, J.R. Coggins, J.G. Lindsay, S.K. Chapman, Probing electron
transfer in flavocytochrome P-450 BM3 and its component domains, Eur. J.
Biochem. 239 (1996) 403–409.
[16] A.P. Jamakhandi, B.C. Jeffus, V.R. Dass, G.P. Miller, Thermal inactivation of the
reductase domain of cytochrome P450 BM3, Arch. Biochem. Biophys. 439
(2005) 165–174.
[17] P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D.
Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Measurement
of protein using bicinchoninic acid, Anal. Biochem. 150 (1985) 76–85.
[18] T. Omura, R. Sato, The carbon monoxide-binding pigment of liver microsomes.
I. Evidence for its hemoprotein nature, J. Biol. Chem. 239 (1964) 2370–2378.
[19] T. Omura, R. Sato, The carbon monoxide-binding pigment of liver microsomes.
II. Solubilization, purification, and properties, J. Biol. Chem. 239 (1964) 2379–
2385.
Investigations are ongoing to determine, the importance of the
heme domain and the two flavin domains for this reduction, and
if this reaction has implication for other cytochrome P450
isozymes involved in the metabolism of xenobiotics or endogenous
substrates.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] A.W. Munro, D.G. Leys, K.J. McLean, K.R. Marshall, T.W. Ost, S. Daff, C.S. Miles,
S.K. Chapman, D.A. Lysek, C.C. Moser, C.C. Page, P.L. Dutton, P450 BM3: the very
model of a modern flavocytochrome, Trends Biochem. Sci. 27 (2002) 250–257.
[2] M.A. Noble, C.S. Miles, S.K. Chapman, D.A. Lysek, A.C. MacKay, G.A. Reid, R.P.
Hanzlik, A.W. Munro, Roles of key active-site residues in flavocytochrome P450
BM3, Biochem. J. 339 (Pt 2) (1999) 371–379.
[3] M.J.I. Paine, Electron transfer partners, in: P.R. Ortiz de Montellano (Ed.),
Cytochrome P450: Structure, Mechanism, and Biochemistry, Springer, New
York, 2006.
[20] O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with
the Folin phenol reagent, J. Biol. Chem. 193 (1951) 265–275.
[21] D.H. Lang, C.K. Yeung, R.M. Peter, C. Ibarra, R. Gasser, K. Itagaki, R.M. Philpot,
A.E. Rettie, Isoform specificity of trimethylamine N-oxygenation by human
flavin-containing monooxygenase (FMO) and P450 enzymes: selective
catalysis by FMO3, Biochem. Pharmacol. 56 (1998) 1005–1012.
[22] M.J. Cryle, J.J. De Voss, The role of the conserved threonine in P450 BM3 oxygen
activation: substrate-determined hydroxylation activity of the Thr268Ala
mutant, ChemBioChem 9 (2008) 261–266.
[4] H.M. Girvan, T.N. Waltham, R. Neeli, H.F. Collins, K.J. McLean, N.S. Scrutton, D.
Leys, A.W. Munro, Flavocytochrome P450 BM3 and the origin of CYP102 fusion
species, Biochem. Soc. Trans. 34 (2006) 1173–1177.
[23] I.G. Denisov, T.M. Makris, S.G. Sligar, I. Schlichting, Structure and chemistry of
cytochrome P450, Chem. Rev. 105 (2005) 2253–2277.
[5] C.J. Whitehouse, S.G. Bell, L.L. Wong, P450(BM3) (CYP102A1): connecting the
dots, Chem. Soc. Rev. (2011).
[24] H. Hirao, D. Kumar, S. Shaik, On the identity and reactivity patterns of the
‘‘second oxidant’’ of the T252A mutant of cytochrome P450cam in the
oxidation of 5-methylenenylcamphor, J. Inorg. Biochem. 100 (2006) 2054–
2068.
[25] M. Sono, R. Perera, S. Jin, T.M. Makris, S.G. Sligar, T.A. Bryson, J.H. Dawson, The
influence of substrate on the spectral properties of oxyferrous wild-type and
T252A cytochrome P450-CAM, Arch. Biochem. Biophys. 436 (2005) 40–49.
[26] D.S. Sem, C.B. Kasper, Geometric relationship between the nicotinamide and
isoalloxazine rings in NADPH-cytochrome P-450 oxidoreductase: implications
for the classification of evolutionarily and functionally related flavoproteins,
Biochemistry 31 (1992) 3391–3398.
[6] C.H. Yun, K.H. Kim, D.H. Kim, H.C. Jung, J.G. Pan, The bacterial P450 BM3: a
prototype for a biocatalyst with human P450 activities, Trends Biotechnol. 25
(2007) 289–298.
[7] A.J. Warman, O. Roitel, R. Neeli, H.M. Girvan, H.E. Seward, S.A. Murray, K.J.
McLean, M.G. Joyce, H. Toogood, R.A. Holt, D. Leys, N.S. Scrutton, A.W. Munro,
Flavocytochrome P450 BM3: an update on structure and mechanism of a
biotechnologically important enzyme, Biochem. Soc. Trans. 33 (2005) 747–
753.
[8] E.S. Roberts, A.D. Vaz, M.J. Coon, Catalysis by cytochrome P-450 of an oxidative
reaction in xenobiotic aldehyde metabolism: deformylation with olefin
formation, Proc. Natl. Acad. Sci. USA 88 (1991) 8963–8966.
[27] H.M. Girvan, A.J. Dunford, R. Neeli, I.S. Ekanem, T.N. Waltham, M.G. Joyce, D.
Leys, R.A. Curtis, P. Williams, K. Fisher, M.W. Voice, A.W. Munro,
Flavocytochrome P450 BM3 mutant W1046A is a NADH-dependent fatty
acid hydroxylase: implications for the mechanism of electron transfer in the
P450 BM3 dimer, Arch. Biochem. Biophys. 507 (2011) 75–85.
[28] A.L. Shen, C.B. Kasper, Differential contributions of NADPH-cytochrome P450
oxidoreductase FAD binding site residues to flavin binding and catalysis, J. Biol.
Chem. 275 (2000) 41087–41091.
[29] M.J. Sutcliffe, L. Masgrau, A. Roujeinikova, L.O. Johannissen, P. Hothi, J. Basran,
K.E. Ranaghan, A.J. Mulholland, D. Leys, N.S. Scrutton, Hydrogen tunnelling in
enzyme-catalysed H-transfer reactions: flavoprotein and quinoprotein
systems, Philos. Trans. Roy. Soc. Lond. B Biol. Sci. 361 (2006) 1375–1386.
[9] O.A. Barski, S.M. Tipparaju, A. Bhatnagar, The aldo-keto reductase superfamily
and its role in drug metabolism and detoxification, Drug Metab. Rev. 40 (2008)
553–624.
[10] C.S. Mazur, J.F. Kenneke, M.R. Goldsmith, C. Brown, Contrasting influence of
NADPH and a NADPH-regenerating system on the metabolism of carbonyl-
containing compounds in hepatic microsomes, Drug Metab. Dispos. 37 (2009)
1801–1805.
[11] I. Amunom, S. Srivastava, R.A. Prough, Aldehyde reduction by cytochrome
P450, Curr. Protoc. Toxicol. (2011) Unit4 37. Chapter 4.
[12] I. Amunom, L.J. Dieter, V. Tamasi, J. Cai, D.J. Conklin, S. Srivastava, M.V. Martin,
F.P. Guengerich, R.A. Prough, Cytochromes P450 catalyze the reduction of
alpha, beta-unsaturated aldehydes, Chem. Res. Toxicol. 24 (2011) 1223–1230.
[13] G. Ottolina, S. Riva, G. Carrea, B. Danieli, A.F. Buckmann, Enzymatic synthesis of
[4R-2H]NAD (P)H and [4S-2H]NAD(P)H and determination of the