Communication
ChemComm
DD acknowledges financial support from SERB (EMR/2016/
000857), India, and the UKIERI (DST/INT/UK/P-119/2016), India.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 D. J. Kushner, Bacteriol. Rev., 1969, 33, 302–345.
2 S. Maiti, I. Fortunati, C. Ferrante, P. Scrimin and L. J. Prins, Nat.
Chem., 2016, 8, 725.
3 A. Jain, S. Dhiman, A. Dhayani, P. K. Vemula and S. J. George, Nat.
Commun., 2019, 10, 450.
4 J. Wang, K. Liu, R. Xing and X. Yan, Chem. Soc. Rev., 2016, 45, 5589–5604.
5 E. Reisler and E. H. Egelman, J. Biol. Chem., 2007, 282, 36133–36137.
6 A. Desai and T. J. Mitchison, Annu. Rev. Cell Dev. Biol., 1997, 13, 83–117.
7 A. J. Howard and R. R. L. Clark, Appl. Mech. Rev., 2002, 55, B39–B39.
8 S. O. Rizzoli, EMBO J., 2014, 33, 788–822.
Fig. 4 CLSM images of the transient system constructed by 1, DA,
0.2 mg mLÀ1 urease, and 1 : 3 urea/GdL in the presence of NR at different
times showing the temporal formation of the vesicles.
9 E. Mattia and S. Otto, Nat. Nanotechnol., 2015, 10, 111.
10 S. De and R. Klajn, Adv. Mater., 2018, 30, 1706750.
11 M. Kumar, N. L. Ing, V. Narang, N. K. Wijerathne, A. I. Hochbaum
and R. V. Ulijn, Nat. Chem., 2018, 10, 696–703.
12 S. Bal, K. Das, S. Ahmed and D. Das, Angew. Chem., Int. Ed., 2019, 58,
244–247.
13 H. Wang, Y. Wang, B. Shen, X. Liu and M. Lee, J. Am. Chem. Soc.,
2019, 141, 4182–4185.
14 F. della Sala, W. Verbeet, S. Silvestrini, I. Fortunati, C. Ferrante and
L. J. Prins, ChemNanoMat, 2018, 4, 821–830.
15 J. Boekhoven, W. E. Hendriksen, G. J. M. Koper, R. Eelkema and
J. H. van Esch, Science, 2015, 349, 1075–1079.
16 J. P. Wojciechowski, A. D. Martin and P. Thordarson, J. Am. Chem.
Soc., 2018, 140, 2869–2874.
17 G. Wang, B. Tang, Y. Liu, Q. Gao, Z. Wang and X. Zhang, Chem. Sci.,
2016, 7, 1151–1155.
18 S. Panja, C. Patterson and D. J. Adams, Macromol. Rapid Commun.,
2019, 40, 1900251.
Having established the transient formation of vesicles, we
were interested to check the repeatability of the transient
assembly by refuelling after each cycle. Refuelling after the first
cycle reproduced similar cycles of events and the aggregation in
subsequent cycles was studied using DLS and fluorescence
spectroscopy (using DPH) as shown in Fig. 3A and B. In
subsequent cycles, a lower rise in initial pH followed by a rapid
decay in pH was observed (Fig. S7, ESI†). The DLS data also
showed a steady decrease in the lifetime of the assembled state
in consecutive cycles. This fall in efficiency of the pH clock is
due to the accumulation of gluconic acid in the system after
each cycle which increases the overall acidity of the system.
Fluorescence studies using DPH as the hydrophobic probe also
showed an increase in the fluorescence intensity followed by a
steady decay. The second reaction cycle shows a nearly identical
variation in the fluorescence intensity which indicates the
stability of the system under repeated pH cycles.
¨
19 P. K. Kundu, D. Samanta, R. Leizrowice, B. Margulis, H. Zhao, M. Borner,
T. Udayabhaskararao, D. Manna and R. Klajn, Nat. Chem., 2015, 7, 646.
20 T. Heuser, A.-K. Steppert, C. M. Lopez, B. Zhu and A. Walther, Nano
Lett., 2015, 15, 2213–2219.
21 A. Dasgupta and D. Das, Langmuir, 2019, 35, 10704–10724.
To gain further insight into the dynamics of the aggregation, 22 K. I. Assaf and W. M. Nau, Chem. Soc. Rev., 2015, 44, 394–418.
23 S. K. Steven, J. Barrow, M. J. Rowland, J. del Barrio and O. A. Scherman,
DLS studies were performed with aliphatic amines of varying
Chem. Rev., 2015, 115, 12320–12406.
chain lengths (Fig. S8, ESI†). The chain length had no significant
24 D. Das, K. Assaf and W. Nau, Front. Chem., 2019, 7, 619.
effect on the aggregation behaviour and time scale. However, a 25 Y. J. Jeon, P. K. Bharadwaj, S. Choi, J. W. Lee and K. Kim, Angew.
Chem., Int. Ed., 2002, 41, 4474–4476.
26 D. Jiao, J. Geng, X. J. Loh, D. Das, T.-C. Lee and O. A. Scherman,
direct proportionality between the size of the aggregates and the
chain lengths could be observed as the average diameter increases
Angew. Chem., Int. Ed., 2012, 51, 9633–9637.
with the chain length of the amine.
In conclusion, we have shown the transient formation of a
SPA which subsequently forms a vesicular assembly in response
27 J. H. Mondal, S. Ahmed, T. Ghosh and D. Das, Soft Matter, 2015, 11,
4912–4920.
28 J. H. Mondal, T. Ghosh, S. Ahmed and D. Das, Langmuir, 2014, 30,
11528–11534.
to a pH clock. The formation of the SPA is assisted by the 29 Y. H. Ko, E. Kim, I. Hwang and K. Kim, Chem. Commun., 2007,
1305–1315.
ternary complexation by CB[8]. The pH clock is established by
combining urea/urease based fast biocatalytic processes and
30 M. E. Bush, N. D. Bouley and A. R. Urbach, J. Am. Chem. Soc., 2005,
127, 14511–14517.
slow hydrolysis of GdL. The imine bond formation under basic 31 Y.-M. Zhang, J.-H. Liu, Q. Yu, X. Wen and Y. Liu, Angew. Chem., Int.
Ed., 2019, 58, 10553–10557.
32 B. Pramanik, S. Ahmed, N. Singha, B. K. Das, P. Dowari and D. Das,
conditions and its hydrolysis under an acidic medium are
the key chemical transformations used for the construction of
Langmuir, 2019, 35, 478–488.
the SPA and its transient assembly. The temporal formation of the 33 N. Singha, B. K. Das, B. Pramanik, S. Das and D. Das, Chem. Sci.,
2019, DOI: 10.1039/C9SC03417J.
34 B. Pramanik and D. Das, J. Phys. Chem. C, 2018, 122, 3655–3661.
35 S. D. Cesareo and S. R. Langton, FEMS Microbiol. Lett., 1992, 99, 15–21.
vesicle requires chemical fuel to maintain the out-of-equilibrium
state and several cycles of the transient assembly can be achieved by
supplying the fuel to the system.
36 J. H. Mondal, S. Ahmed and D. Das, Langmuir, 2014, 30, 8290–8299.
14122 | Chem. Commun., 2019, 55, 14119--14122
This journal is ©The Royal Society of Chemistry 2019