Organic Process Research & Development
Article
(16) (a) Dudukovic, M. P.; Larachi, F.; Mills, P. L. Chem. Eng. Sci.
1999, 54, 1975−1977. (b) Whitesides, G. M. Nature 2006, 442, 368−
370.
(17) Whitesides, M. Nature 2006, 442, 368−370.
(18) Delimitsou, C.; Zoumpanioti, M.; Xenakis, A.; Stamatis, A.
Biocatal. Biotransform. 2002, 20, 319−327.
(19) Lowry, R. R.; Tinsley, J. I. J. Am. Oil Chem. Soc. 1976, 53, 470−
472.
(20) Junior, I. I.; Flores, M. C.; Sutili, F. K.; Leite, S. G. F.; Miranda,
L. S. M.; Leal, I. C. R.; de Souza, R. O. M. A. J. Mol. Catal. B: Enzym.
2012, 77, 53−58.
(21) Itabaiana, I., Jr.; Leal, I. C. R.; Miranda, L. S. M.; de Souza, R. O.
M. A. J. Flow Chem. 2013, 3, 122−126.
(22) Itabaiana, I.; Sutili, F. K.; Leite, S. G. F.; Gonca̧ lves, K. M.;
Cordeiro, Y.; Leal, I. C. R.; Miranda, L. S. M.; Ojeda, M.; Luque, R.; de
Souza, R. O. M. A. Green Chem. 2013, 15, 518−524.
(23) Junior, I. I.; Sutili, F. K.; Miranda, L. S. M.; Leal, I. C. R.; de
Souza, R. O. M. A. J. Mol. Catal. B: Enzym. 2011, 72, 313−318.
(24) Jenta, T. R. J.; Batts, G.; Rees, G. D.; Robinson, B. H. Biotechnol.
Bioeng. 1997, 53, 121−131.
residence time of 11 min at 45 °C, giving conversion yields of
up to 99%. The study of the reuse of the system showed that it
can be recycled 15 times without activity loss, a number 2 times
higher than that for immobilized lipase under batch
a
conditions.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ADDITIONAL NOTE
Although there is a relatively small difference between the
■
a
structures of the applied organic solvents, these differences
impart intense chemical properties, such as viscosity and
lipophilicity. More viscous solvents tend to reduce the surface
contact between the biocatalyst and the substrate, resulting in
lower conversions. However, the enzyme affinity for the solvent
is also important. The lipophilicity is essential for the lipase
interface formation to expose its active site and perform
catalysis. In the case of microemulsions and reverse micelles,
the enzyme is entrapped in an aqueous microdomain, with the
active site facing the external surface. These nanostructures are
sustained by the surfactant, in this case AOT. Nonpolar
solvents require much larger amounts of AOT, which can be
detrimental to the enzyme and at the same time generate a
more viscous microemulsion. Although each reaction system
(either batch or continuous flow) presents inherent advantages,
each system in continuous flow showed a greater process
control in this reaction and therefore was compared with the
previous work done in batch mode.
(25) Costa, I. C. R.; Leite, S. G. F.; Leal, I. C. R.; Miranda, L. S. M.;
de Souza, R. O. M. A. J. Braz. Chem. Soc. 2011, 22, 1993−1998.
(26) Zoumpanioti, M.; Parmaklis, P.; Dominguez de Maria, P.;
Stamatis, H.; Sinisterra, J. V.; Xenakis, A. Biotechnol. Lett. 2008, 30,
1627−1631.
(27) Blattner, C.; Zoumpanioti, M.; Kroner, J.; Schmeer, G.; Xenakis,
̈
A.; Kunz, W. J. Supercrit. Fluids 2006, 36, 182−193.
(28) Bradford, M. M. Anal. Biochem. 1976, 72, 248−554.
REFERENCES
■
(1) Xenakis, A.; Papadimitriou, V.; Stamatis, H.; Kolisis, F. N. In
Microemulsions: Properties and Applications; Fanun, M., Ed.; CRC
Press: Boca Raton, FL, 2009; Chapter 13, pp 349−385.
(2) Stamatis, H.; Xenakis, A.; Kolisis, F. N. Biotechnol. Adv. 1999, 17,
293−318.
(3) Itabaiana, I., Jr.; Gonca̧ lves, K. M.; Cordeiro, Y.; Zoumpanioti,
M.; Leal, I. C. R.; Miranda, L. S. M.; de Souza, R. O. M. A.; Xenakis, A.
J. Mol. Catal. B: Enzym. 2013, 96, 34−39.
(4) Cooper, C.; Nwosu, C. V. J. Am. Oil Chem. Soc. 1992, 69, 257−
260.
(5) Holmberg, K.; Osterberg, E.; Akoh, C. C. J. Am. Oil Chem. Soc.
1988, 65, 1544−1548.
(6) Gonca̧ lves, K. M.; Sutili, F. K.; Junior, I. I.; Flores, M. C.;
́
Miranda, L. S. M.; Leal, I. C. R.; Cordeiro, Y.; Luque, R.; de Souza, R.
O. M. A. ChemSusChem 2013, 6, 872−879.
(7) Malik, M. A.; Wani, M. Y. Arabian J. Chem. 2012, 5, 397−417.
(8) Biasutti, M. A.; Abuin, E. B.; Silber, J. J.; Correa, N. M.; Lissi, E.
A. Adv. Colloid Interface Sci. 2008, 136, 1−24.
(9) Pavlidis, I. V.; Gournis, D.; Papadopoulos, G. K.; Stamatis, H. J.
Mol. Catal. B: Enzym. 2009, 60, 5−6.
(10) Zoumpanioti, M.; Stamatis, H.; Xenakis, A. Biotechnol. Adv.
2010, 28, 395−406.
(11) Nagayama, K.; Tada, K.; Naoe, K.; Imai, M. Biocatal.
Biotransform. 2003, 21, 321−324.
(12) Shintre, M. S.; Ghadge, R. S.; Sawant, S. B. Chem. Technol.
Biotechnol. 2002, 77, 1114−1121.
(13) Atkinson, P. J.; Grimson, M. J.; Heenan, R. K.; Howe, A. M.;
Robinson, B. H. J. Chem. Soc. Chem. Commun. 1989, 23, 1807−1809.
(14) Watts, P.; Wiles, C. Eur. J. Org. Chem. 2008, 1655−1671.
(15) Wegner, J.; Ceylan, S.; Kirschning, A. Chem. Commun. 2011, 47,
4583−4592.
1376
dx.doi.org/10.1021/op500136c | Org. Process Res. Dev. 2014, 18, 1372−1376