10.1002/anie.201913309
Angewandte Chemie International Edition
COMMUNICATION
[7]
[8]
B. L. Conley, W. J. Tenn, K. J. H. Young, S. K. Ganesh, S. K. Meier, V.
R. Ziatdinov, O. Mironov, J. Oxgaard, J. Gonzales, W. A. Goddard, R. A.
Periana J. Mol. Catal. A-Chem. 2006, 251, 8-23.
maintained high activity after re-used for 4 times (Figure S8a). In
addition, HAADF-STEM confirmed Cr species still kept single
atoms state after re-used and calcinations (Figure S8b).
a) R. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii
Science 1998, 280, 560-564; b) E. G. Chepaikin, G. N. Boyko, A. P.
Bezruchenko, A. A. Leshcheva, E. H. Grigoryan J. Mol. Catal. A-Chem.
1998, 129, 15-18; c) R. A. Periana, D. J. Taube, E. R. Evitt, D. G. Loffler,
P. R. Wentrcek, G. Voss, T. Masuda Science 1993, 259, 340-343.
C. Hammond, M. M. Forde, M. H. Ab Rahim, A. Thetford, Q. He, R. L.
Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, N. F. Dummer, D. M.
Murphy, A. F. Carley, S. H. Taylor, D. J. Willock, E. E. Stangland, J. Kang,
H. Hagen, C. J. Kiely, G. J. Hutchings Angew. Chem. Int. Ed. 2012, 51,
5129-5133.
In conclusion, we have produced synergistic catalysts with
single chromium atoms supported on TiO2 nanoparticles for direct
methane oxidation to C1 oxygenated products with H2O2 as
oxidant under mild conditions. The optimized catalyst shows high
activity and selectivity with the highest yield for C1 oxygenated
products of 57.9 mol/molCr at 50ºC. During the reaction, methane
is activated to form the methyl radical, which is first converted into
CH3OH and CH3OOH, and CH3OH is further oxidized to
HOCH2OOH and HCOOH. This study provides a new non-noble
metal single-site catalyst with superior catalytic performance for
direct conversion of methane under mild conditions.
[9]
[10] a) N. Agarwal, S. J. Freakley, R. U. McVicker, S. M. Althahban, N.
Dimitratos, Q. He, D. J. Morgan, R. L. Jenkins, D. J. Willock, S. H. Taylor,
C. J. Kiely, G. J. Hutchings Science 2017, 358, 223-227; b) M. H. Ab
Rahim, M. M. Forde, R. L. Jenkins, C. Hammond, Q. He, N. Dimitratos,
J. A. Lopez-Sanchez, A. F. Carley, S. H. Taylor, D. J. Willock, D. M.
Murphy, C. J. Kiely, G. J. Hutchings Angew. Chem. Int. Ed. 2013, 52,
1280-1284.
Acknowledgements
[11] a) Y. Kwon, T. Y. Kim, G. Kwon, J. Yi, H. Lee J. Am. Chem. Soc. 2017,
139, 17694-17699; b) J. Shan, M. Li, L. F. Allard, S. Lee, M. Flytzani-
Stephanopoulos Nature 2017, 551, 605-608.
The authors thank the National Key Research and Development
Program of China (Grant No. 2018YFA0208504), National
Natural Science Foundation of China (NSFC 21932006,
21573245) and the Youth Innovation Promotion Association of
CAS (2017049). The help from Dr. Jie Cui (NMR measurement
and discussion) was acknowledged.
[12] a) J. J. Xie, R. X. Jin, A. Li, Y. P. Bi, Q. S. Ruan, Y. C. Deng, Y. J. Zhang,
S. Y. Yao, G. Sankar, D. Ma, J. W. Tang Nat. Catal. 2018, 1, 889-896; b)
D. Y. Osadchii, A. I. Olivos-Suarez, Á. Szécsényi, G. Li, M. A. Nasalevich,
I. A. Dugulan, P. S. Crespo, E. J. M. Hensen, S. L. Veber, M. V. Fedin,
G. Sankar, E. A. Pidko, J. Gascon ACS Catal. 2018, 8, 5542-5548; c) X.
Cui, H. Li, Y. Wang, Y. Hu, L. Hua, H. Li, X. Han, Q. Liu, F. Yang, L. He,
X. Chen, Q. Li, J. Xiao, D. Deng, X. Bao Chem 2018, 4, 1902-1910.
[13] a) D. B. Burueva, L. M. Kovtunova, V. I. Bukhtiyarov, K. V. Kovtunov, I.
V. Koptyug Chem. Eur. J. 2019, 25, 1420-1431; b) Y. Chen, S. Ji, C.
Chen, Q. Peng, D. Wang, Y. Li Joule 2018, 2, 1242-1264.
Keywords: Methane • single atom • chromium • heterogeneous
catalysis • synergistic catalysis
[14] A. A. Latimer, A. R. Kulkarni, H. Aljama, J. H. Montoya, J. S. Yoo, C. Tsai,
F. Abild-Pedersen, F. Studt, J. K. Norskov Nat. Mater. 2017, 16, 225-229.
[15] a) C. Hammond, S. Conrad, I. Hermans ChemSusChem 2012, 5, 1668-
1686; b) H. D. Gesser, N. R. Hunter, C. B. Prakash Chem. Rev. 1985,
85, 235-244.
[1]
[2]
[3]
[4]
a) P. Schwach, X. Pan, X. Bao Chem. Rev. 2017, 117, 8497-8520; b) X.
Meng, X. Cui, N. P. Rajan, L. Yu, D. Deng, X. Bao Chem 2019, 5, 2296-
2325.
a) M. Ravi, M. Ranocchiari, J. A. van Bokhoven Angew. Chem. Int. Ed.
2017, 56, 16464-16483; b) D. Saha, H. A. Grappe, A. Chakraborty, G.
Orkoulas Chem. Rev. 2016, 116, 11436-11499.
[16] F. Bonino, A. Damin, G. Ricchiardi, M. Ricci, G. Spano, R. D'Aloisio, A.
Zecchina, C. Lamberti, C. Prestipino, S. Bordiga J. Phys. Chem. B 2004,
108, 3573-3583.
X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M.
Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan, X. Bao
Science 2014, 344, 616-619.
[17] a) R. López, R. Gómez, S. Oros-Ruiz Catal. Today 2011, 166, 159-165;
b) C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G. E. Mullenberg,
Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer
Corporation, Physical Electronic Division, U.S.A., 1979.
P. Tomkins, M. Ranocchiari, J. A. van Bokhoven Acc. Chem. Res. 2017,
50, 418-425.
[18] G. C. Vasquez, D. Maestre, A. Cremades, J. Piqueras J. Raman
Spectrosc. 2017, 48, 847-854.
[5]
[6]
H. F. Abbas, W. Daud Int. J. Hydrog. Energy 2010, 35, 1160-1190.
a) P. Tang, Q. Zhu, Z. Wu, D. Ma Energy Environ. Sci. 2014, 7, 2580-
2591; b) K. Aasberg-Petersen, I. Dybkjær, C. V. Ovesen, N. C. Schjødt,
J. Sehested, S. G. Thomsen J. Nat. Gas Sci. Eng. 2011, 3, 423-459.
This article is protected by copyright. All rights reserved.