Total Synthesis of Alkaloid (()-Clivonine
A R T I C L E S
tazettine (5)8 and in Narcissus ‘King Alfred’ for lycorenine.9
Moreover, Wildman developed a biomimetic protocol for the
synthesis of pretazettine (4) from haemeanthidine (3)6 which
has been employed in all but two10 subsequent total syntheses
of tazettine7 and pretazettine.11 However, Wildman was unable
to develop a corresponding protocol for biomimetic conversion
of lycorine to lycorenine-type ring systems (I f IV), noting
that this conversion requires a ∼180° rotation and minimal relief
of strain, as compared to a ∼90° rotation accompanied by
significant relief of strain in the haemeanthidine/pretazettine
series (3 f 4).6,7c,9 Consequently, although Mizukami and
Kotera have developed a multistep, nonbiomimetic synthetic
sequence for this type of interconversion based on the von Braun
reaction,12 Barton’s original hypothesis remains synthetically
unverified. Herein we describe a concise, fully diastereoselective
total synthesis of the lycorenine-type Amaryllidaceae alkaloid
(()-clivonine (19) from a lycorine-type progenitor 17 in which
this key transformation has finally been accomplished.
Scheme 2. Synthesis of Clivonine Progenitor 15
Results and Discussion
Clivonine (19) was isolated and characterized from CliVia
miniata Regel in 1956 by Wildman,13 and its relative and
absolute stereochemistry was established by Jeffs et al. in
1971.14,15 To date, the only synthesis of (()-clivonine has been
that reported by Irie in 1973 (17 steps, 0.43% overall yield from
piperonal).16
The synthesis of (()-clivonine progenitor 15 parallels our
previous synthesis of (+)-trianthine (16), employing a retro-
Cope elimination17 (11 f 12) as the key step (Scheme 2).18
Although trianthine (16) and clivonine progenitor 15 both
have trans B-C/cis C-D ring-junctions, they are diastereomeric
with respect to the ring C cis-diol motif. Consequently, following
1,2-addition of aryllithium reagent to the convex face of bicyclic
enone (()-619,20 and trapping as acetate 7 (92% yield), a one-
pot Ireland-Claisen rearrangement/CH2N2 esterification was
employed to relay the stereochemistry at C11b to C3a with
retention of configuration (f 8, 85% yield; cf. the vinyl cuprate
SN2′ displacement with inVersion of configuration employed for
trianthine).18a Ester to aldehyde reduction (DIBAL-H) and then
oximation (NH2OH·HCl, 82% yield, 2 steps) and oxime
reduction (NaCNBH3) then afforded retro-Cope elimination
substrate 11 (83% yield). Hydroxylamine 11 cyclized smoothly
upon heating as a 0.014 M solution in degassed toluene at
80 °C for 17 h to provide N-hydroxyhydrindole 12 as a single
stereoisomer in 98% yield.18a Hydrogenolysis of the N-O bond
(Raney-Ni, 94% yield), N-formylation (HCO2COMe, 93%
yield), and then Bischler-Napieralski ring B closure with
concomitant acetonide deprotection (POCl3) gave water-soluble
iminium salt 15 after purification by ion-exchange and then C18
reverse-phase solid-phase extraction (SPE) (42% yield).
Prior studies in which we had been unable to obtain lactamol
17 cleanly, via lactam half-reduction (LiEtBH3) or via Polonovs-
ki reactions from the amine-N-oxide (Ac2O or TFAA), had
taught us that lactamol 17 was extremely sensitive to Cannizzaro
disproportionation to give a 1:1 mixture of the corresponding
amine and lactam, particularly under basic conditions. Attempts
to transform iminium salt 15 into the corresponding N-methyl
aldehyde according to a procedure developed by Rozwadowska
for hydrastinine using MeI in MeOH,21,22 and into lactamol 17
according to procedures developed by Dosta´l for sanguinarine
using NaOD in d3-MeCN/D2O)23 or Na2CO3/D2O,24 also
induced substantial disproportionation. However, treatment of
a solution of iminium salt 15 in d6-DMSO/D2O (5:1 v/v) with
(6) Wildman, W. C.; Bailey, D. T. J. Am. Chem. Soc. 1969, 91, 150–
157, and references therein.
(7) (a) Hendrickson, J. B.; Bogard, T. L.; Fisch, M. E.; Grossert, S.;
Yoshimura, N. J. Am. Chem. Soc. 1974, 96, 7781–7789. (b) Tsuda,
Y.; Ukai, A.; Isobe, K. Tetrahedron Lett. 1972, 13, 3153–3156. (c)
Danishefsky, S.; Morris, J.; Mullen, G.; Gammill, R. J. Am. Chem.
Soc. 1982, 104, 7591–7599.
(8) Fales, H. M.; Wildman, W. C. J. Am. Chem. Soc. 1964, 86, 294–295.
(9) Harken, R. D.; Christensen, C. P.; Wildman, W. C. J. Org. Chem.
1976, 41, 2450–2454.
(10) (a) Abelman, M. M.; Overman, L. E.; Tran, V. D. J. Am. Chem. Soc.
1990, 112, 6959–6964. (b) Rigby, J. H.; Cavezza, A.; Heeg, M. J.
J. Am. Chem. Soc. 1998, 120, 3664–3670.
(11) (a) Martin, S. F.; Davidsen, S. K.; Puckette, T. A. J. Org. Chem. 1987,
52, 1962–1972. (b) Baldwin, S. W.; Debenham, J. S. Org. Lett. 2000,
2, 99–102. (c) Nishimata, T.; Sato, Y.; Mori, M. J. Org. Chem. 2004,
69, 1837–1843. (d) Zhang, F.-M.; Tu, Y.-Q.; Liu, J.-D.; Fan, X.-H.;
Shi, L.; Hu, X.-D.; Wang, S.-H.; Zhang, Y.-Q. Tetrahedron 2006,
62, 9446–9455.
(19) Prepared by a telescoped variant of the method described by Hudlicky,
T.; Fan, R. L.; Tsunoda, T.; Luna, H.; Andersen, C.; Price, J. D. Isr.
J. Chem. 1991, 31, 229–238. Ramesh, K.; Wolfe, M. S.; Lee, Y.;
Velde, D. V.; Borchardt, R. T. J. Org. Chem. 1992, 57, 5861–5868.
See Supporting Information.
(20) Enone 6 can also be prepared in enantiomerically pure form [(5S, 6S)-
(+)-6] via Pseudomonas putida microbial oxidation of chlorobenzene,
see: (a) Spivey, A. C.; Giro´ Man˜as, C.; Mann, I. Chem. Commun.
2005, 4426–4428. (b) Reference 18a.
(12) (a) Mizukami, S. Tetrahedron 1960, 11, 89–95. (b) Kotera, K.;
Hamada, Y.; Nakane, R. Tetrahedron 1968, 24, 759–770.
(13) Briggs, C. K.; Highet, R. J.; Highet, P. F.; Wildman, W. C. J. Am.
Chem. Soc. 1956, 78, 2899–2904.
(14) Dopke, W.; Bienert, M.; Burlingame, A. L.; Jeffs, P. W.; Farrier, D. S.
Tetrahedron Lett. 1967, 451–457.
(15) Jeffs, P. W.; Hansen, J. F.; Dopke, W.; Bienert, M. Tetrahedron 1971,
27, 5065–5079.
(21) Rozwadowska, M. D. Bull. Acad. Pol. Sci., Sci. Chim. 1971, 19, 673–
679.
(16) (a) Irie, H.; Nagai, Y.; Tamoto, K.; Tanaka, H. J. Chem. Soc., Chem.
Commun. 1973, 302–303. (b) Tanaka, H.; Irie, H.; Babu, S.; Uyeo,
S.; Kuno, A.; Ishiguro, Y. J. Chem. Soc., Perkin Trans. 1 1979, 535–
538.
(22) Gluszynska, A.; Mackowska, I.; Rozwadowska, M. D.; Sienniak, W.
Tetrahedron: Asymmetry 2004, 15, 2499–2505.
(23) Dosta´l, J.; Pota´e`ek, M.; Nechva´tal, M. Collect. Czech. Chem. Commun.
1993, 58, 395–403.
(17) Cooper, N. J.; Knight, D. W. Tetrahedron 2004, 60, 243–269.
(18) (a) Oppolzer, W.; Spivey, A. C.; Bochet, C. B. J. Am. Chem. Soc.
1994, 116, 3139–3140. (b) Spivey, A. C. Chimia 2009, 63, 864–866.
(24) See`ka´øova´, P.; Marek, R.; Dosta´l, J.; Dommisse, R.; Esmans, E. L.
Magn. Reson. Chem. 2002, 40, 147–152.
9
J. AM. CHEM. SOC. VOL. 132, NO. 14, 2010 5177