Published on Web 04/16/2008
The Total Synthesis of Roquefortine C and a Rationale for the
Thermodynamic Stability of Isoroquefortine C over
Roquefortine C
Ning Shangguan,§ Warren J. Hehre,† William S. Ohlinger,† Mary Pat Beavers,‡ and
Madeleine M. Joullié*,§
WaVefunction, Inc., 18401 Von Karman AVenue, Suite 370, IrVine, California 92612, Institute for
Medicine and Engineering, UniVersity of PennsylVania, 1026 Vagelos Research Labs,
Philadelphia, PennsylVania 19104-6383, and Department of Chemistry, UniVersity of
PennsylVania, Philadelphia, PennsylVania 19104-6323
Received January 4, 2008; E-mail: mjoullie@sas.upenn.edu
Abstract: The first total synthesis of roquefortine C is achieved by implementation of a novel elimination
strategy to construct the thermodynamically unstable E-dehydrohistidine moiety. Molecular modeling studies
are presented which explain the instability of the roquefortine C structure compared to that of isoroquefortine
C.
and Antartic sediments.14 A new member of this family,
Introduction
roquefortine E (3), has been isolated from an Australian soil
The roquefortines are a class of biologically active indole
alkaloids featuring a hexahydro[2,3-b]indole nucleus substituted
at the benzylic ring junction with a 1,1-dimethylallyl group. A
number of structurally similar indole alkaloids that belong to
the amauromine, ardeemin, or flustramine families have received
significant attention from synthetic chemists.1–5 The roquefortine
family of fungal metabolites was initially isolated from cultures
of Penicillium roqueforti obtained from soil samples, though
these compounds are also produced by other Penicillium
species.6–10 Roquefortine C was found in a variety of food
products, due to both natural occurrence and contamination.7,11–13
Roquefortine D (1) is the dihydro derivative of roquefortine C
(2) and the biosynthetic precursor to 2. More recently, both were
isolated from P. aurantiogriseum strains obtained from Artic
isolate of the ascomycete Gymnoascus reessii (Figure 1).15
Roquefortine E (3) is the first roquefortine to be isolated from
a fungus other than Penicillium. Roquefortine C possesses
bacteriostatic activity against Gram-positive bacteria and also
interacts with cytochrome P450 by binding to the heme. The
effect of roquefortine on the growth of gram-positive organisms
only occurs in those containing hemins.16–19 However, the
mechanisms of toxicity and metabolic pathway of roquefortine
are still unclear.12,20–22
An important structural feature of 2 is the configuration of
the attachment to the imidazole ring. The E-configuration of
the 3–17 double bond of roquefortine was established by
comparison of its spectral properties with those of its photoi-
somer, isoroquefortine C (4, Figure 2) that has the Z-configu-
ration. The unusual E-dehydrohistidine moiety typically under-
goes facile isomerization under acidic, basic, or photochemical
conditions.23–27 Isoroquefortine C (4) is not a natural product.
In contrast to roquefortine C, isoroquefortine C does not bind
to iron.
§ Department of Chemistry, University of Pennsylvania.
† Wavefunction, Inc.
‡ Institute for Medicine and Engineering, University of Pennsylvania.
(1) Depew, K. M.; Marsden, S. P.; Zatorska, D.; Zatorski, A.; Bornmann,
W. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 11953.
(2) Lindel, T.; Braeuchle, L.; Golz, G.; Boehrer, P. Org. Lett. 2007, 9,
283.
The interest in roquefortine C (2) is due to its presence in all
blue cheeses and the health implications of its existence in
(3) Marsden, S. P.; Depew, K. M.; Danishefsky, S. J. J. Am. Chem. Soc.
1994, 116, 11143.
(4) Suarez-Castillo, O. R.; Sanchez-Zavala, M.; Melendez-Rodriguez, M.;
Aquino-Torres, E.; Morales-Rio, M. S.; Joseph-Nathan, P Heterocycles
2007, 71, 1539.
(14) Kozlovsky, A. G.; Zhelifonova, V. P.; Adanin, V. M.; Antipova, T. V.;
Overskaya, S. M.; Ivanushkina, N. E.; Grafe, U. Appl. Biochem.
Microbiol. 2003, 39, 393.
(5) Takase, S.; Itoh, Y.; Uchida, I.; Tanaka, H.; Aoki, H. Tetrahedron
Lett. 1985, 26, 847.
(15) Clark, B.; Capon, R. J.; Lacey, E.; Tennant, S.; Gill, J. H. J. Nat.
Prod. 2005, 68, 1661.
(6) Ohmomo, S.; Kitamoto, H. K.; Nakajima, T. J. Sci. Food Agric. 1994,
211.
(16) Aninat, C.; Andre, F.; Delaforge, M. Food Addit. Contam. 2005, 22,
361.
(7) Ohmomo, S.; Oguma, K.; Ohashi, T.; Abe, M. Agric. Biol. Chem.
1978, 42, 2387.
(17) Aninat, C.; Delaforge, M. AdV. Exp. Med. Biol. 2001, 500, 331.
(18) Aninat, C.; Hayashi, Y.; Andre, F.; Delaforge, M. Chem. Res. Toxicol.
2001, 14, 1259.
(8) Ohmomo, S.; Sato, T.; Utagawa, T.; Abe, M. Agric. Biol. Chem. 1975,
39, 1333.
(19) Delaforge, M.; Bouille, G.; Jaouen, M.; Jankowski, C. K.; Lamouroux,
C.; Bensoussan, C. Peptides 2001, 22, 557.
(9) Scott, P. M.; Kennedy, B. P. C. J. Agric. Food Chem. 1976, 24, 865.
(10) Scott, P. M.; Merrien, M.-A.; Polonsky, J. Experientia 1976, 32, 140.
(11) Cole, R. J.; Dorner, J. W.; Cox, R. H.; Raymond, L. W. J. Agric.
Food Chem. 1983, 31, 655.
(20) Arnold, D. L.; Scott, P. M.; MCGuire, P. F.; Hartwig, J.; Nera, E. A.
Food Cosmet. Toxicol. 1978, 16, 369.
(21) Ohmomo, S. J. Antibac. Antifung. Agents 1982, 10, 253.
(22) Wagener, R. E.; Davis, N. D.; Diener, U. L. Appl. EnViron. Microbiol.
1980, 39, 882.
(12) Häggblom, P. Appl. EnViron. Microbiol. 1990, 56, 2924.
(13) Möller, T.; Åkerstrand, K.; Massoud, T. Nat. Toxins 1997, 5, 86.
9
10.1021/ja800067q CCC: $40.75
2008 American Chemical Society
J. AM. CHEM. SOC. 2008, 130, 6281–6287 6281