Communication
ChemComm
3
4
V. Kumar and S. J. Connon, Chem. Commun., 2017, 53, 10212.
For reviews on NHC-catalysed oxidative transformations see: (a) C. E. I.
Knappke, A. Imami and A. Jacobi von Wangelin, ChemCatChem,
10 Selected examples: (a) A. O. G ´a lvez, C. P. Schaack, H. Noda and
J. W. Bode, J. Am. Chem. Soc., 2017, 139, 1826; (b) S. P. Rannard and
N. J. Davis, Org. Lett., 2000, 2, 2117; (c) D. Xu, K. Prasad, O. Repic and
T. J. Blacklock, Tetrahedron Lett., 1995, 36, 7357; (d) M. C. O’Sullivan and
D. M. Dalrymple, Tetrahedron Lett., 1995, 36, 3451; (e) A. Mitchinson,
B. T. Golding, R. J. Griffin and M. C. O’Sullivan, J. Chem. Soc., Chem.
Commun., 1994, 2613.
2
012, 4, 937; (b) S. De Sarkar, A. Biswas, R. C. Samanta and A. Studer,
Chem. – Eur. J., 2013, 19, 4664.
5
Selected recent reviews on NHC catalysis: (a) W. Wang, L. Cui, P. Sun,
Li. Shi, C. Yue and F. Li, Chem. Rev., 2018, 118, 9843; (b) M. H. Wang and
K. A. Scheidt, Angew. Chem., Int. Ed., 2016, 55, 14912; (c) D. M. Flanigan, 11 Review: J. Gonz ´a lez-Sab ´ı n, R. Mor ´a n-Ramallal and F. Rebolledo,
F. Romanov-Michailidis, N. A. White and T. Rovis, Chem. Rev., 2015, Chem. Soc. Rev., 2011, 40, 532.
15, 9307; (d) R. S. Menon, A. T. Biju and V. Nair, Chem. Soc. Rev., 2015, 12 A. A. Bastian, A. Marcozzi and A. Herrmann, Nat. Chem., 2012, 4, 789.
4, 5040; (e) M. N. Hopkinson, C. Richter, M. Schedler and F. Glorius, 13 For a recent review see: F. Piazzolla and A. Termperini, Tetreahedron
Nature, 2014, 510, 485; ( f ) J. Mahatthananchai and J. W. Bode, Acc. Lett., 2018, 59, 2615.
Chem. Res., 2014, 47, 696; (g) A. Grossmann and D. Enders, Angew. 14 K. O. Marichev, E. C. Garcia, K. C. Bhowmick, D. J. Wherritt,
Chem., Int. Ed., 2012, 51, 314; (h) X. Bugaut and F. Glorius, Chem. Soc. H. Arman and M. P. Doyle, Chem. Sci., 2017, 8, 7152.
Rev., 2012, 41, 3511; (i) S. R. Yetra, A. Patra and A. T. Biju, Synthesis, 2015, 15 For a recent example see: J.-S. Oh, J.-W. Lee, T. H. Ryu, J. H. Lee and
357; ( j) H. U. Vora and T. Rovis, Aldrichimica Acta, 2011, 44, 3; C. E. Song, Org. Biomol. Chem., 2012, 10, 1052.
k) A. T. Biju, N. Kuhl and F. Glorius, Acc. Chem. Res., 2011, 44, 1182; 16 K. O. Marichev, H. Qiu, A. C. Offield, H. Arman and M. P. Doyle,
l) V. Nair, R. S. Menon, A. T. Biju, C. R. Sinu, R. R. Paula, A. Josea and J. Org. Chem., 2016, 81, 9235.
V. Sreekumar, Chem. Soc. Rev., 2011, 40, 5336; (m) P.-C. Chiang and 17 The process is mechanistically complex (see ref. 3, 6 and 7).
1
4
1
(
(
J. W. Bode, RSC Catal. Ser., 2010, 6, 399; (n) C. D. Campbell, K. B. Ling
and A. D. Smith, Catal. Met. Complexes, 2010, 32, 263; (o) J. L. Moore and
T. Rovis, Top. Curr. Chem., 2009, 291, 77; (p) E. M. Phillips, A. Chan and
Phenazine aids in the in situ conversion of pyridoin (a by-product
of the acylation event) back to pyridil. The phenazine is reoxidised
by air upon workup and be recovered and reused if desired.
K. A. Scheidt, Aldrichimica Acta, 2009, 42, 55; (q) T. Rovis, Chem. Lett., 18 The lower yield of 16 and 18 may be related to the volatility of allyl
2
008, 37, 1; (r) K. Zeitler, Ernst Schering Found. Symp. Proc., 2007, 2, 183;
amine (b.p. 54 1C) and propargyl amine (b.p. 83 1C) at STP; since the
solid cinnamylamine produced 17 in near quantitative yield.
(s) D. Enders, O. Niemeier and A. Henseler, Chem. Rev., 2007, 107, 5506;
(
2
t) N. Marion, S. Diez-Gonzalez and S. P. Nolan, Angew. Chem., Int. Ed., 19 (a) L. H. Uppadine, F. R. Keene and P. D. Beer, J. Chem. Soc., Dalton
007, 46, 2988; (u) K. Zeitler, Angew. Chem., Int. Ed., 2005, 44, 7506.
Trans., 2001, 2188; (b) P. D. Garimella, A. Datta, D. W. Romanini,
K. N. Raymond and M. B. Francis, J. Am. Chem. Soc., 2011, 133, 14704;
(c) L. Yu and P. Fei, Tetrahedron Lett., 2014, 55, 3697; (d) L. Yan,
G. Huang, H. Wang, F. Xiong and H. Peng, Eur. J. Org. Chem., 2018, 99.
20 For an example where poor selectivity was overcome by complexa-
tion with 9-BBN see: Z. Zhang, Z. Yin, N. A. Meanwell, J. F. Kadow
and T. Wang, Org. Lett., 2003, 5, 3399.
6
7
8
E. G. Delany, C.-L. Fagan, S. Gundala, A. Mari, T. Broja, K. Zeitler
and S. J. Connon, Chem. Commun., 2013, 49, 6510.
E. G. Delany, C.-L. Fagan, S. Gundala, K. Zeitler and S. J. Connon,
Chem. Commun., 2013, 49, 6513.
(a) Protecting-Group-Free Organic Synthesis: Improving Economy and
Efficiency, ed. R. A. Fernandes, Wiley, Hoboken, 2018; (b) E. Roulland,
Angew. Chem., Int. Ed., 2011, 50, 1226; (c) I. S. Young and P. S. Baran, 21 Doyle et al. (ref. 14) were able to benzoylate this substrate with an
Nat. Chem., 2009, 1, 193. impressive 98% isolated yield.
P. G. M. Wuts and T. W. Greene, Protecting Groups in Organic 22 U. Ragnarsson, L. Grehn, H. L. S. Maia and L. S. Monteiro, J. Chem.
Synthesis, Wiley, Hoboken, 4th edn, 2007. Soc., Perkin Trans. 1, 2002, 97.
9
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 13526--13529 | 13529